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BEGIN
1001
Issue load request to the memory system
operably coupled to the CPU/Core

1003

Error from load request YES
received and should trigger generation of

NAR operand element

f‘ 1005

Generate meta-data and
payload for the NAR
operand element
according to the
predefined internal format

NO

NAR is part of reguested |

Generate meta-data for the requested operand
data element according to the predefined
internal format {(such meta-data can be based on

NAR is for the reguested
Scalar operand element

the semantics of the encoding of the load
operation)

Generate payload for the requested operand
data element according to the predefined
internal format; such payload is derived from
the results of the load request

I
I
I
I
I
|
1009 |
I
I
I
I
I
I

1011
Physically associate the meta-data and the payload for the
requested operand data element according to the
predefined internal format of the requested operand data
element

1013

Store the meta-data and the payload for the requested
operand data element {in the predefined internal format of
the requested operand data element) in one or more
operand storage elements of the CPU/Core

FiG. 10
END
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BEGIN

Process an operand data element (meta-data and associated

1101

payload) in the predefined internal format as well as an address
for a store operation

1103

Joes the meta-data and payload of the operand dat: YES
element and/or the address specify a NAR ?
1105
NO Raise
1107 Fault
YES Joes the meta-data and payload of the operand dats
element and/or the address specify a None?
1109
Nothing 1111

Use the meta-data of the received operand data element to identify the
width (number of bytes) of the operand data payload that is to be stored

in Memory System {in the predefined external format of the Memory
System

1113

Physically disassociate the payload from the meta-data for the received
operand data element

1115

issue store request to store the payload of the operand data element in
the Memory System (in the predefined external format of the Memory
System); the number of bytes of the payload can be determined from the
meta-data of the received operand data element

FIG. 11
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COMPUTER PROCESSOR EMPLOYING
OPERAND DATA WITH ASSOCIATED
META-DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application 1s a continuation of U.S. Ser. No.
14/567,820, filed on Dec. 11, 2014, enfitled “Computer
Processor Employing Operand Data With Associated Meta-

Data”, which claims priority from U.S. Prov. Appl. Ser. No.
61/914,899, filed on Dec. 11, 2013, entitled “Metadata and

Vectorization in CPUs,” both of which are hereby incorpo-
rated herein by reference in their entireties.

BACKGROUND

1. Field

The present application relates to computer processors.

2. State of the Art

Modern computer processors employ micro-architectural
techniques that seek to exploit instruction level parallelism
(ILP), which 1s a measure of how many of the operations 1n
a computer program can be performed simultaneously.
Examples of such micro-architectural techniques include:

instruction pipelimng where the phases of execution of

istructions can be partially overlapped;

superscalar execution and VLIW 1n which multiple

execution units are used to execute multiple nstruc-
tions 1n parallel;

out-of-order execution where structions execute 1 any

order that does not violate data dependencies; note that
this technique 1s imdependent of both pipelining and
superscalar execution; out-of-order execution can be
implemented dynamically (i.e., while the program 1s
executing) in order to exploit ILP; alternatively, out-
of-order execution can be implemented at compile time
and somehow convey this information to the hardware;
and

speculative execution which allow the execution of com-

plete 1structions or parts of mnstructions before being
certain whether this execution should take place; a
commonly used form of speculative execution 1s con-
trol flow speculation where 1nstructions past a control
flow 1nstruction (e.g., a branch) are executed before the
target of the control flow instruction 1s actually known;
speculative execution 1s often used 1n combination with
branch prediction, which 1s used to avoid stalling for
control dependencies to be resolved.

These techniques are usetul 1 exploiting ILP but have
limitations. For example, the techniques that employ specu-
lation can be ineflicient when work 1s performed that 1s not
actually needed and can require complex circuitry to enable
discarding unneeded execution results. Furthermore, specu-
lation 1s constrained to a limited set of operations or is
carried out with an extreme overhead burden that wastes
computational bandwidth and power.

These techniques also fall short in exploiting ILP that can
be garnered from vectorization of while-loops and counting,
loops.

SUMMARY

This summary 1s provided to itroduce a selection of
concepts that are further described below 1n the detailed
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2

description. This summary 1s not intended to 1dentily key or
essential features of the claimed subject matter, nor 1s 1t
intended to be used as an aid 1n limiting the scope of the
claimed subject matter.

[lustrative embodiments of the present disclosure are
directed to a computer processor that includes a plurality of
operand storage elements that store operand data values and
associated meta-data as unitary operand data elements. The
computer processor further includes at least one functional
umt that performs operations that access the respective
unitary operand data elements stored in the plurality of
operand storage elements. The at least one functional unit
can access the respective unitary operand data elements
stored 1 the plurality of operand storage elements by
hardware operations carried out by the computer processor
that deal jointly with the operand data values and associated
metadata together as unitary operand data elements.

In one embodiment, the meta-data associated with a given
operand data value as part of a unitary operand data element
can specily a type of the umitary operand data element. For
example, the type of the unitary operand data element can be
selected from the group consisting of 1) a scalar operand type
that represents a single scalar operand value and 11) a vector
operand type that represents a number of scalar operand
values. The single scalar operand value represented by the
scalar operand type can have one of a number of predefined
widths 1 bytes. The meta-data associated with the given
operand data value as part of the unitary operand data
clement of scalar operand type can further specify one of the
predefined widths 1n bytes. The number of scalar operand
values represented by the vector operand type can each have
one ol a number of predefined widths 1n bytes. The meta-
data associated with the given operand data value as part of
the unitary operand data element of vector operand type can
turther specily one of the predefined widths 1n bytes.

In another embodiment, the operand data value of the
unitary operand data element can be represented by at least
one payload data element that 1s physically associated with
the meta-data of the unitary operand data element. The
meta-data can be generated and physically associated with
the payload data element when loading the payload data
clement from a memory system operably coupled to the
computer processor. The meta-data can be physically disas-
sociated with the payload data element when storing the
payload data element to such memory system.

The meta-data and the at least one payload element of the
unitary operand data element can be configured to represent
a Not-A-Result operand that 1s indicative of an error con-
dition. The payload element of the umtary operand data
clement that represents the Not-A-Result operand can
include debugging information (such as information that
reflects the nature of the error condition and/or information
that provides some indication of where 1n the executing
program the error condition took place). The at least one
functional unit can be configured such that, when processing
a speculable operation that operates on a given Not-A-Result
operand, the Not-A-Result operand propagates to the result
of such speculable operation. The at least one functional unit
can also be configured such that, when processing a non-
speculable operation that operates on a given Not-A-Result
operand, the at least one functional unit generates a fault that
requires special handling by the computer processor.

The meta-data and at least one payload element of the
unitary operand data element can be configured to represent
a None operand that 1s indicative of a missing operand value.
The payload element of the unitary operand data element
that represents the None operand can include debugging
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information (such as information that provides some indi-
cation of where 1n the executing program the missing
operand occurred). The at least one functional unit can be
configured such that, when processing a speculable opera-
tion that operates on a given None operand, the None
operand propagates to the result of such speculable opera-
tion. The at least one functional unit can also be configured
such that, when processing a non-speculable operation that
operates on a given None operand to update state informa-
tion of the computer processor, the at least one functional
unit skips the non-speculable operation and thus does not
update the state mnformation of the computer processor.

The meta-data associated with a given operand data value
as part of a unitary operand data element of a scalar operand
type that represents a floating-point number can be config-
ured to specily a set of floating-point error condition flags.
The at least one functional unit can be configured such that,
when processing a floating-point operation on at least one
input scalar operand that represents a floating-point number,
the set of floating-point error condition flags for the at least
one input scalar operand are logically combined together
with the set of floating-point error condition flags that result
from the floating-point operation by a Boolean OR operation
in order to derive the set of floating point error condition
tflags for the result scalar operand. The at least one functional
unit can also be configured such that, when processing a
non-speculable operation on at least one scalar operand that
represents a floating-point number, the set of floating-point
error condition flags for the at least one scalar operand can
be used to update a set of global tloating point error registers
maintained by the computer processor.

The computer processor can be part ol a computer pro-
cessing system that includes a memory system operably
coupled to the computer processor. The memory system can
be configured such that the operand data value of a respec-
tive unitary operand data element stored in the plurality of
operand storage elements 1s loaded from the memory sys-
tem, and the memory system does not include meta-data
associated with the operand data value of the respective
unitary operand data element.

In another aspect, a method for processing operand data
in a computer processor 1s provided that determines whether
an operation processed by the computer processor 1s a
particular pick-type operation that specifies a control input
operand that represents a Boolean value and two 1nput
operands. IT so, the computer processor uses hardware
circuitry of the computer processor to evaluate the Boolean
value of the control input operand and select one of the two
input operands as a result of the particular operation based
on the evaluation of the Boolean value of the control mput
operand.

In one embodiment, the control mput operand can be a
scalar Boolean value, and the two 1mput operands can both
be a scalar operand or a vector operand.

In another embodiment, the control input operand can be
a vector of Boolean values, and the two mnput operands can
be a vector operand. In this case, the hardware circuitry of
the computer processor 1s configured to evaluate each
respective Boolean value of the control mput vector and
select one of the two corresponding elements of the two
operands as an element of a result vector of the particular
pick-type operation based on the evaluation of the respective
Boolean value of the control mput operand vector.

At least one of the two iput operands can represent a
None operand that 1s indicative of a missing operand value
and selectable by the particular pick-type operation. The
computer processor can be configured such that, when
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processing a non-speculable operation that operates on the
None operand to update state information of the computer
processor, the computer processor skips the non-speculable
operation and thus does not update the state information of
the computer processor.

In yet another aspect, a method for processing operand
data 1n a computer processor 1s provided that determines
whether an operation processed by the computer processor
1s a particular vector-smear-type operation that specifies an
input vector argument of Boolean values. In this case, the
hardware circuitry of the computer processor 1s used to
evaluate the Boolean values of the input vector to produce
a resultant vector of Boolean values with a pattern of zero or
more leading false values that corresponds to the first true
clement 1n the mput vector argument. The nput vector
argument can be a result of a SIMD relational operation
applied to a data vector. The resultant vector of Boolean
values 1s used as a guard mask to control the execution of
SIMD operations as part of a while-loop. The guard mask
can be used such that the SIMD operations are applied only
to valid elements and not to overrun elements, or are applied
only to overrun elements and not to valid elements. The last
clement of the resultant vector of Boolean values or an extra
clement produced by the particular vector-smear-type opera-
tion provides an indication whether the termination condi-
tion for the while loop has been detected.

In still another aspect, a method for processing operand
data 1n a computer processor 1s provided that determines
whether an operation processed by the computer processor
1s a particular remaining-type operation that specifies an
iput vector argument of Boolean values whose contents
indicate which of a number of implied scalar iterations of a
counting loop are valid and which are to be skipped. In this
case, the hardware circuitry of the computer processor 1s
configured to employ the 1nput vector argument as a control
input vector that 1s processed in conjunction with two data
argument vectors. One of the data arguments 1s a vector of
data corresponding to both the correct iterations and the
iterations past the end of the count loop. The other data
argcument 1s a vector of None operands values for the
iterations past the end of the counting loop. The control input
vector 1s processed to select one of the two corresponding
clements of the two data arguments as an element of a result
vector of the particular operation based on the evaluation of
the respective Boolean value of the control input vector. The
result vector of the particular remaining-type operation can
be used for vector iteration of the count loop and the
semantics ol None operand ensure that any 1terations beyond
the count loop have no visible program consequence. The
particular remaining-type operation can further generate a
scalar Boolean value that can be tested by a conditional
branch operation to close the counting loop.

In yet another aspect, a method for processing operand
data 1n a computer processor 1s provided that determines
whether an operation processed by the computer processor
1s a particular satisfied-type operation that specifies an input
vector argument of Boolean values for a number of iterations
of a while loop search. In this case, each Boolean value of
the 1nput vector argument indicates whether the while loop
search was satisfied in the corresponding iteration. The
hardware circuitry of the computer processor 1s configured
to produce first and second results based on the input vector
argument. The first result represents a count of the leading
unsatisiied iterations, and the second result represents a
Boolean scalar that indicates whether any of the iterations
satisfied the condition. The second result can be tested by a
conditional branch operation to close the while loop search.
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BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 1s a high-level block diagram of a computer
processing system according to an exemplary embodiment
of the present disclosure.

FIG. 2 1s a schematic diagram of a scalar-type operand
data element according to an exemplary embodiment of the
present disclosure.

FIG. 3 1s a schematic diagram of the payload of the
scalar-type operand data element of FIG. 2 for a NAR or
None operand value.

FIG. 4A 1s an 1llustration of the processing of a scalar
NAR as part of a speculable operation.

FIG. 4B 1s an illustration of the processing of a scalar
NAR as part of a non-speculable operation.

FIG. 5A 1s an illustration of the processing of a scalar
None as part of a speculable operation.

FIG. 5B 1s an illustration of the processing of a scalar
None as part of a non-speculable operation.

FIG. 6A 1s an 1llustration of the processing of a scalar
meta-data tloating-point (FP) flags as part of a speculable
operation.

FIG. 6B 1s an illustration of the processing of a scalar
meta-data FP tlags as part of a non-speculable operation.

FIG. 7 1s a schematic diagram of a vector-type operand
data element according to an exemplary embodiment of the
present disclosure.

FIG. 8A 1s an 1illustration of the processing of a vector
NAR as part of a speculable operation.

FIG. 8B 1s an 1illustration of the processing of a vector
NAR as part of a non-speculable operation.

FIG. 9A 1s an 1illustration of the processing of a vector
None as part of a speculable operation.

FIG. 9B 1s an illustration of the processing of a vector
None as part of a non-speculable operation.

FIG. 10 1s a flow chart showing illustrative operations of
the CPU of FIG. 1 1n loading operand data from the memory
system 1n conjunction with the processing of a load opera-
tion.

FIG. 11 1s a flow chart showing 1illustrative operations of
the CPU of FIG. 1 1n storing operand data mto the memory
system 1n conjunction with the processing of a store opera-
tion.

FI1G. 12 1s an illustration of operand width polymorphism
that can be supported by the CPU of FIG. 1 for a represen-
tative add operation.

FIG. 13 1s an 1llustration of a number of integer addition
operations with different rules for the case of integer over-
flow; the CPU of FIG. 1 can be configured to support one or
more of these integer addition operations.

FIG. 14A 1s an illustration of scalar widen and scalar
narrow operations that can be supported by the CPU of FIG.
1.

FIG. 14B 1s an illustration of vector widen and vector
narrow operations that can be supported by the CPU of FIG.
1.

FIG. 15A 1s an illustration of a scalar pick operation that
can be supported by the CPU of FIG. 1.

FIG. 15B 1s a schematic 1llustration of a hardware circuit
that can be part of the CPU of FIG. 1 and carry out the scalar
pick operation of FIG. 15A.

FIG. 16A 1s an 1llustration of a vector pick operation that
can be supported by the CPU of FIG. 1.

FIG. 16B 1s a schematic 1llustration of a hardware circuit
that can be part of the CPU of FIG. 1 and carry out the vector
pick operation of FIG. 16A.
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FIG. 17A 1s an 1illustration of a vector smear (exclusive)
operation that can be supported by the CPU of FIG. 1.

FIG. 17B 1s a schematic illustration of a hardware circuit
that can be part of the CPU of FIG. 1 and carry out the vector
smear (exclusive) operation of FIG. 17A.

FIG. 18A 1s an illustration of a vector smear (inclusive)
operation that can be supported by the CPU of FIG. 1.

FIG. 18B i1s a schematic illustration of a hardware circuit
that can be part of the CPU of FIG. 1 and carry out the vector
smear (inclusive) operation of FIG. 18A.

FIG. 19A 1s an 1illustration of a remaining operation that
can be supported by the CPU of FIG. 1.

FIG. 19B 1s a schematic illustration of a hardware circuit
that can be part of the CPU of FIG. 1 and carry out the
remaining operation ol FIG. 19A.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

s

According to the present disclosure, a sequence of
instructions 1s stored 1 a Memory System 101 and pro-
cessed by a CPU (or Core) 102 as shown i FIG. 1. The
Memory System 101, which can include one or more levels
of cache and main memory, 1s configured to store two types
ol data operands that are processed (consumed and/or pro-
duced) by the processing of the instructions by the CPU 102.
The two types of data include scalar operands (or scalars)
and vector operands (or vectors). Each scalar operand rep-
resents a single scalar value of some byte width. The scalar
value can be many types with a number of byte widths per
type. In one illustrative example, the scalar value can be an
integer type (such as an mteger of 1, 2, 4, 8 or 16 bytes 1n
width), a pointer type (such as a pointer of 8 bytes 1n width),
a floating-point number type (such as an IEEE binary float
number of 2, 4, 6 or 16 bytes in width), a decimal number
type (such as an IEEE decimal number of 4, 8 or 16 bytes
in width), a fraction type (such as an ISO C fraction of 1, 2,
4, 8 or 16 bytes 1n width), or some other scalar type. Each
vector operand represents an array of scalar values of a
uniform type and width. The number of scalar values 1n a
given vector operand can also be limited to power-of-two
values. The size of the vector operands can also be of some
uniform size (such as 16 bytes in width) or of a variety of
predefined sizes 11 desired. The Memory System 101 stores
cach scalar operand and each vector operand as consecutive
bytes of data 1n a predefined format (referred to herein as the
predefined external format). The CPU 102 includes operand
storage elements that store the two types of data operands
(scalar operands and vector operands) 1n a predefined format
(referred to herein as the predefined internal format) that 1s
different from the predefined external format used by the
Memory System 101. The operand storage elements can
include storage elements organized as a logical belt (which
1s described 1n U.S. patent application Ser. No. 14/312,159
filed on Jun. 23, 2014, commonly assigned to assignee of the
present application and herein incorporated by reference in
its entirety), a register file, or special purpose registers. The
operand storage elements can also include a scratchpad
(which 1s described 1n U.S. patent application Ser. No.
14/311,988 filed on Jun. 23, 2014, commonly assigned to
assignee of the present application and herein incorporated
by reference 1n 1ts entirety).

The CPU 102 also includes a number of functional units
(such as one or more integer ALUs, one or more integer
multipliers, one or more floating-point units, one or more
branch units, one or more load/stare units, and one or more

vector operation units) that operate on the scalar operands
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and/or the vector operands in the predefined mternal format
as stored by the operand storage elements. The functional
units can be configured to process separate operations con-
currently (in parallel with one another).

For example, the CPU 102 can possibly include one or
more integer ALUs that perform twos-complement binary
integer arithmetic for arithmetic and logical operations on
scalar operands of supported widths. The representation of
false and true, as produced by logical operations, can be
binary zero and one respectively.

The CPU 102 can further employ one or more tloating-
point units that supports binary floating-point arithmetic
utilizing IEEE-754R standard representation 2, 4, 8 and 16
byte widths. The two-byte width can be a Vahd computa-
tional representation as well as the storage representation
defined by the standard. The floating-point unit(s) can fur-
ther support decimal floating-point arithmetic utilizing
IEEE-754R standard decade representation at 4, 8 and 16
byte widths. The floating-point umt(s) can further support
complex arithmetic utilizing IEEE-754R standard complex
representation using either binary or decimal underlying
representation, in complex widths of 8 and 16 bytes in either
radix and 4 bytes 1n binary. The functional units of the CPU
102 can be configured to provide conversion operations to
and from the standard alternate decimal representation as
well as conversion operations to and from binary floating-
point representation.

The CPU 102 can further employ one or more integer
adders and one or more integer multipliers that support
fixed-point (integer) arithmetic uses CO0X standard repre-
sentation for both fixed-point and fraction types.

The tunctional units of the CPU 102 can perform address-
ing arithmetic utilizing pointers (addresses) that occupy 8
bytes. The pointers can be configured to address a global
virtual address space of 2°° bytes, address a per-process
local address space of 2°° bytes, and have support for
garbage collected memory.

The functional units of the CPU 102 can support predi-
cated operations that examine only the least significant bit of
their predicate arguments. The functional units of the CPU
102 can be configured to have no preference for signed
versus or unsigned data, and the signed-ness of the character
type may be freely chosen by the programming language or
software.

Scalar Operand Data Flements

Each given scalar operand that 1s processed by the CPU
102 (either consumed as an argument of an operation or
produced as a result of an operation), which 1s referred to as
a “scalar operand data element” herein, includes payload
data that 1s physically associated with meta-data according
to the predefined internal format. An example of such a
predefined internal format for the given scalar operand data
clement 1s shown 1 FIG. 2. The payload data of the scalar
operand data element 1s shown as 201. The meta-data of the
scalar operand data element 1s shown as 203A and 203B. For
a valid scalar operand data element (which 1s not a NAR and
None type as described below), the payload data 201 rep-
resents the value of a scalar operand having a predefined
number of bytes (byte-width) that 1s a power of two. The
meta-data 203 A can include a tag (labeled as “scalarity tag™)
with two parts: 1) a bit (labeled scalar or vector) whose
binary value indicates that the associated payload data 201
represents a scalar operand (as opposed to a binary value that
the associated payload data represents a vector operand), and
11) an element width field whose value represents the pre-
defined number of bytes (power-of-two byte-width) of the
associated payload data 201.
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The meta-data 203B of the scalar operand data element
can further include a not-a-result (NAR) bit as shown 1n
FIG. 2. The NAR bit indicates whether the associated
payload data 201 1s valid or reflects a previously detected
error. IT the NAR bit indicates that the payload data 201 1s
valid, the associated payload data 201 represents the value
of a scalar operand having a predefined number of bytes
(byte-width) that corresponds to the element width field of
the meta-data tag 203 A. The errors retlected by the NAR bt
can include 1) memory access violations, such as when a
load operation addresses a memory location for which the
program does not have access permission; 11) any one of
many operations for which integer overtlow 1s possible,
when using the form of the operation which treats overflow
as an error; and 111) a floating-point operation that generates
a NaN signal (per the IEEE standard) when the CPU 1s set
to treat the NaN signal as errors. If the NAR bit indicates that
the payload data 201 retlects a previously detected error, the
associated payload data 201 can provide useful debugging
information. For example, such debugging information can
include a KIND field that reflects the nature of the original
error and a WHERE, field that provides some indication of
where 1n the program the error took place as shown 1n FIG.
4. The WHERE field can possibly include the value of (or a
hash of) the program counter value for the instruction that
first created the error.

For each given scalar operand data element that represents
a floating-point number, the meta-data of the given scalar
operand data element can further include a set of Boolean
exception flags (or FP flags) as shown in FIG. 2. The FP flags
are 1implicit output arguments to all floating-point operations
and correspond to error conditions that relate to the floating-
point number of the scalar operand data element. For
example, a set of five FP flags can represent the following
error conditions that relate to the floating-point number of
the scalar operand data element: a divide by zero error
condition, 11) an mexact error condition, 111) an invalid error
condition, 1v) an underflow error condition, and v) an
overtlow error condition.

Scalar operand data elements that employ the NAR bit to
indicate that the payload data 201 reflects a previously
detected error are referred to as scalar NARs herein. Such
scalar NARs are useful where the CPU 102 performs
speculation. Speculation 1s an optimization technique
employed by the CPU 102 where the CPU 102 can possibly
perform some operations that may not be actually needed.
The main 1dea 1s to do work before 1t 1s known whether that
work will be needed at all, so as to prevent a delay that
would have to be incurred by doing the work after 1t 1s
known whether it 1s needed. 11 1t turns out the work was not
needed after all, any changes made by the work are reverted
and the results are 1gnored. Speculation can involve going
down one path 1 a code sequence and then if wrong
discarding the results down this one path and executing the
other path. Speculation can also mvolve going down all
paths of execution 1n a code sequence and choosing the right
result after the fact and then discarding the results down the
wrong path(s). Speculation can also 1involve starting opera-
tions before i1t 1s known whether such operations will be
needed at all. Speculation involves the speculative execution
ol speculable operations—an operation that can be specu-
latively executed without side effects to the logical program
order (such as data hazards, structural hazards, and control
or branching hazards). Speculation does not involve non-
speculable operations—an operation that produces side
cllects to the logical program order (such as data hazards,
structural hazards, and control or branching hazards) when
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speculatively executed. Furthermore, the detection of an
error condition 1n the execution of a non-speculable opera-
tion produces a fault which requires special handling by the
CPU 102 1n a manner deemed appropriate by the system
designer. Non-speculable operations can include control
flow operations such as conditional branch operations that
cannot handle a scalar NAR as the control predicate value.
That 1s, 1f the branch 1s to be taken i1f a value 1s true and not
taken 1f 1t 15 false, what should the branch do 1t the value 1s

a NAR? Non-speculable operations can also include store
operations where the address of the store operation 1is
derived from a scalar NAR or where the value to be stored
1s a scalar NAR. In the case where the address of the store
operation 1s derived from a scalar NAR, 1t 1s quite 1mpos-
sible to decide what location should be updated with the
stored value. It 1s also contemplated that store operations can
be speculable 1n nature. In this case, the speculation can
bufler the corresponding store request (for example, by
adding control bits to a write bufler) and not complete the
buflered store request until the condition being speculated
on 1s resolved. The operation that updates the speculation
hardware (e.g., the control bits of the write builer) upon
resolving the condition being speculated on 1s non-specu-
lable 1n nature. Note that when the CPU has speculatively
executed operations that are not on the control path even-
tually taken, then the results of those mis-speculatively
executed operations must be discarded.

Note that speculable operations can follow down a path
through multiple branches, but the respective branch opera-
tions are not speculable. In this case, the operations down the
path are lifted to in front of the branch operation and so are
executed before we get to the branch operation. After the
branch operation, the non-speculable operations of the cho-
sen path (which were not, and cannot be, lifted to 1n front of
the branch) will be executed and will use the speculated
results ol the chose path. The speculated results of the
non-taken path are discarded.

In such a system, when a functional unit of the CPU 102
performs speculative execution of a speculable operation
that involves one or more scalar operand data elements, the
functional umit 1s adapted to check whether any input scalar
operand data element that 1s supplied to the functional unit
1s a scalar NAR. If so, the functional unit 1s adapted to
bypass the normal processing and produce a scalar NAR
result, which 1s typically the same NAR value as the scalar
NAR 1nput. This operation 1s shown schematically 1n FIG.
4A. Consequently, the presence of a scalar NAR 1nput
during speculation indicates that an error condition occurred
somewhere 1n the computation history leading to the mput,
and this error condition i1s passed down the speculated
control path.

However, when a functional unit of the CPU 102 executes
a non-speculable: operation that involves one or more scalar
operand data elements, the functional unit 1s adapted to
check whether any input scalar operand data element that 1s
supplied to the functional unit 1s a scalar NAR. If so, the
functional unit 1s adapted to bypass the normal processing
and trigger the CPU 102 to raise a fault, which 1s specially
handled by the CPU 102 1n a manner deemed appropriate by
the system designer. This operation 1s shown schematically
in FIG. 4B.

Note that scalar NARs can be discarded like ordinary
mis-speculated results, and the error condition does not have
to be unwound. Furthermore, the use of the scalar NAR
allows more kinds of operations to be speculable, and
consequently greatly increases the chance that otherwise 1dle
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machine resources can be utilized by speculated computa-
tions which will often have actual utility.

Furthermore, the payload data 201 of the scalar NAR can
provide useful debugging information (such as the KIND
field and WHERE field as described above with respect to
FIG. 3). Thus, 1n the event that the scalar NAR 1s processed
by speculative execution of a non-speculable operation and
triggers error handling as described above, the payload data
201 of the scalar NAR can be made available to program-
ming tools such as a debugger to provide usetful information
to the programmer so that the error can be corrected at the
point where 1t occurred.

The payload data 201 and the meta-data 203A and 203B
of the scalar operand data element can also be used to define
a unique data value (called a None) that can be distinguished
from the ordinary results of computations. The None value
1s used to represent that data 1s missing and the operation on
the missing data can be ignored. In one embodiment, the
representation of the None can be similar to the NAR
operand data element except for a difference 1n the KIND
field of the payload element that distinguishes the None
from the NAR operand data. None can be used during
speculation. More specifically, when a functional unit of the
CPU 102 performs speculative execution of a speculable
operation that mmvolves one or more scalar operand data
clements, the functional unit 1s adapted to check whether any
input scalar operand data element that 1s supplied to the
functional unit 1s a None. If so, the functional unit 1s adapted
to bypass the normal processing and produce a scalar None
result, which 1s typically the same None value as the scalar
None mput. This operation 1s shown schematically 1n FIG.
5A. Consequently, the presence of a scalar None 1nput
during speculation 1s passed down the speculated control
path.

However, when a functional unit of the CPU 102 executes
a non-speculable operation that involves one or more scalar
operand data elements and that updates the machine state
(for example a store to memory or a write to a register), the
functional unit 1s adapted to check whether any imput scalar
operand data element that 1s supplied to the functional unit
1s a None. If so, the functional unit 1s adapted to bypass the
normal processing and simply skip the update operation.
Note that any operation with a mix of scalar None and NAR
arguments can be configured to behave as if only the scalar
None 1s present.

Note that scalar None data element can be used without
the support for the scalar NAR. For example, an implemen-
tation might choose a machine representation that combines
a parity error (to distinguish 1t from ordinary data) and a
particular bit pattern (to distinguish 1t from actual parity
errors). The implementation must also provide means to
make the scalar None value available to the program, for
example 1n a dedicated register. Lastly, any machine opera-
tion that updates the machine state (for example a store to
memory) must detect the presence of a scalar None and skip
the update.

The scalar operand data elements that represent floating-
point numbers and associated FP flags as part of the meta-
data 203B are also useful for speculation. Specifically, when
a functional unit of the CPU 102 performs speculative
execution of a speculable operation that imvolves such a
floating-point scalar operand data element (such as an inter-
mediate or final floating-point computation), the functional
unit 1s adapted to annotate the resultant floating-point scalar
operand data element with a set of FP flags derived from the
logical OR of the FP flags that are associated with the mput
argument floating-point scalar operand data element(s) as
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well as those FP flags resulting from any exceptions detected
during the speculative execution of such speculable opera-
tion. This operation 1s shown schematically i FIG. 6A.
Consequently, the FP flags associated with each given
floating-point scalar operand data element reflects the excep-
tion history of the prior computation(s) that led to the given
floating-point scalar operand data element. Such FP flag
metadata 1s carried through all operations that can be specu-
lated. However, when a functional unit of the CPU 102
performs a non-speculable operation that mvolves such a
floating-point scalar operand data element and updates the
machine state (for example a store to memory or a write to
a register), the functional unit can be adapted to update a
global set of FP flags for future use by the program. An
example of this operation 1s shown schematically in FIG.
6B.
Vector Operand Data Elements

Each given vector operand that i1s processed by the CPU
102 (either consumed as an argument of an operation or
produced as a result of an operation), which 1s referred to as
a “vector operand data element” herein, includes a number
of scalar payload data elements that are physically associ-
ated with meta-data according to the predefined internal
format. The representation and behavior of the scalar ele-
ments of the vector operand data element can be similar to
that of a single scalar operand data element. An example of
such a predefined internal format for the given vector
operand data element 1s shown 1n FIG. 7. The payload data

clements of the vector operand data element are shown as
701A, 701B, .. . 701N. The meta-data of the vector operand

data element 1s shown as 703 and 705A, 7058, ... 705N. For
cach valid scalar value that 1s part of the vector operand
(which 1s not a NAR and None type as described above), the
respective payload data elements 701A, 701B . . . each
represents the value of a scalar operand having a predefined
number of bytes (byte-width) that 1s a power of two. The
total number of bytes of the number of scalar operands
represented by the vector operand data element can be fixed
by design. In one example, the total number of bytes of the
number of scalar operands represented by the vector operand
data element 1s fixed at 128 bytes. In this case, the predefined
number of bytes of the scalar operands and the total number
of bytes of such scalar operands of the vector operand data
clement dictates the number of scalar operands represented
by the vector operand data element. The meta-data 703 of
the vector operand data element can include a tag (labeled as
“scalarnity tag”) with two parts: 1) a bit whose binary value
indicates that the associated payload data elements repre-
sents a vector operand (as opposed to a binary value that
indicates that associated payload data represents a scalar
operand), and 11) an element width field whose value rep-
resents the pre-defined number of bytes (power-of-two byte-
width) of the associated payload data elements 701A,
701B . . . of the vector operand data.

The meta-data 705A, 705B . . . of the vector operand data
clement can further include a not-a-result (NAR) bit for each
payload data element 701A, 701B . . . as shown 1n FIG. 7.
The NAR bit indicates whether the associated payload data
clement 1s valid or reflects a previously detected error. If the
NAR bit indicates that the corresponding payload data
clement reflects a previously detected error (e.g., 1t1s a NAR
as described above), the associated payload data element can
provide useful debugging information. For example, such
debugging information can include a KIND field that reflects
the nature of the original error and a WHERE field that
provides some indication of where 1n the program the error
took place as described above with respect to FIG. 3. The
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WHERE field can possibly include the value of (or a hash
ol) the program counter value for the instruction that first
created the error.

For each given vector payload data element that repre-
sents a floating-point number, the meta-data 7T05A,
705B . . . of the associated payload data element can further
include a set of Boolean exception tlags (or FP flags) as
shown 1n FIG. 3. The FP flags are implicit output arguments
to all floating-point operations and correspond to error
conditions that relate to the floating-point number of the
corresponding vector payload data element. For example, a
set of five FP flags can represent the following error con-
ditions that relate to the floating-point number of the corre-
sponding vector payload data element: 1) a divide by zero
error condition, 11) an mexact error condition, 111) an 1invalid
error condition, 1v) an underflow error condition, and v) an
overflow error condition.

The vector operand data elements that employ the NAR
bit to indicate that the corresponding vector payload data
clement 701A, 701B . . . reflects a previously detected error
are referred to as vector NARs herein. Such vector NARs are
useiul where the CPU 102 performs speculation as described
above.

In such a system, when a functional unit of the CPU 102
performs speculative execution of a speculable operation
that involves one or more vector operand data elements, the
functional unit 1s adapted to check whether any input vector
operand data element that 1s supplied to the functional unit
1s a vector NAR. If so, the functional unit 1s adapted to
bypass the normal processing for each NAR payload ele-
ment of the input vector operand data element(s) and pro-
duce a result vector operand data element with correspond-
ing NAR payload elements. This operation i1s shown
schematically in FIG. 8A where one NAR payload element
for each one of the two mput vector operand data element 1s
propagated to the result vector operand data element. Note
that the other vector operand data elements (other than the
two pairs with a NAR payload element) are processed as
normal (no bypass) to produce a corresponding payload
clement 1n the result vector operand data element. Conse-
quently, the presence of a vector NAR 1nput during specu-
lation indicates that an error condition occurred somewhere
in the computation history for the vector input, and this error
condition 1s passed down the speculated control path.

However, when a functional unit of the CPU 102 executes
a non-speculable operation that involves one or more vector
operands data elements, the functional unit 1s adapted to
check whether any mnput vector operand data element that 1s
supplied to the functional unit 1s a vector NAR. If so, the
functional unit 1s adapted to bypass the normal processing
and trigger the CPU 102 to raise a fault, which is specially
handled by the CPU 102 1n a manner deemed appropriate by
the system designer. Non-speculable operations on vector
operands can include store operations where the address of
the store operation 1s derived from a NAR or where the
vector operand value to be stored includes a NAR. This
operation 1s shown schematically in FIG. 8B.

Note that the one or more NAR payload elements that are
part ol a vector NAR can be discarded like ordinary mis-
speculated results, and the error condition does not have to
be unwound. Furthermore, the use of the vector NAR allows
more kinds of operations to be speculable, and consequently
greatly increases the chance that otherwise i1dle machine
resources can be utilized by speculated computations which
will often have actual utility.

Furthermore, the NAR payload element(s) that are part of
the vector NAR can provide useful debugging information
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(such as the KIND field and WHERE field as described
above with respect to FIG. 3). Thus, in the event that the
vector NAR 1s processed by execution of a non-speculable
operation and triggers error handling as described above, the
NAR payload element(s) that are part of the vector NAR can
be made available to programming tools such as a debugger
to provide useful information to the programmer so that the
error can be corrected at the point where 1t occurred.

The payload data elements 701A, 701B, . . . and the
corresponding meta-data 705A, 705B . . . of the vector
operand data element can also be used to define a unique
data value (called a None) for one or more of such payload
elements. Similar to the scalar None, the None value 1s used
to represent that the payload data element of the vector
operand data element 1s missing and the operation on the
missing payload data element can be i1gnored. In one
embodiment, the representation of the None payload data
clement of the vector operand can be similar to the NAR
payload data element except for a difference 1n the KIND
field of the payload data element that distinguishes the None
from the NAR operand data. None payload data elements as
part of a vector operand data element can be used during
speculation.

More specifically, when a functional unit of the CPU 102
performs speculative execution of a speculable operation
that involves at least one vector operand, the functional unait
1s adapted to check whether any input vector operand data
clement that 1s supplied to the functional unit includes one
or more None pavload data elements. If so, the functional
unit 1s adapted to bypass the normal processing for each
None payload element of the mput vector operand data
clement(s) and produce a result vector operand data element
with corresponding None payload elements. This operation
1s shown schematically in FIG. 9A where one None payload
clement for each one of the two iput vector operand data
clement 1s propagated to the result vector operand data
clement. Note that the other vector operand data elements
(other than the two pairs with a None payload element) are
processed as normal (no bypass) to produce a corresponding,
payload element in the result vector operand data element.
Consequently, the presence of one or more None payload
data elements 1n the input vector operand data elements
input are passed down the speculated control path.

However, when a functional unit of the CPU 102 executes
a non-speculable operation that involves one or more vector
data operand elements and that updates the machine state
(for example a store to memory or a write to a register), the
functional unit 1s adapted to check whether any 1nput vector
operand data element that 1s supplied to the functional unit
includes one or more None payload data elements. 11 so, the
functional unit 1s adapted to bypass the normal processing
for each None payload element of the input vector operand
data element(s) and simply skip the update operation for the
operand data element. This operation 1s shown schemati-
cally in FIG. 9B. Note that any operation with a mix of
vector None and vector NAR arguments can be configured
to behave as 1f only the vector None 1s present.

Note that vector None payload elements can be used
without the support for the vector NAR. For example, an
implementation might choose a machine representation that
combines a parity error (to distinguish 1t from ordinary data)
and a particular bit pattern (to distinguish 1t from actual
parity errors). The implementation must also provide means
to make the vector None payload elements available to the
program, for example 1n one or more dedicated registers.
Lastly, any machine operation that updates the machine state
(for example a store to memory) must detect the presence of
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the vector None payload elements and skip the update of the
vector None payload elements.

The vector operand data elements that represent floating-
point numbers and associated FP flags as part of the meta-
data 705A, 705B . . . are also useful for speculation.
Specifically, when a functional unit of the CPU 102 per-
forms speculative execution of a speculable operation that
involves such a tloating-point vector operand data element
(such as an intermediate or final floating-point computation),
the functional unit 1s adapted to annotate the FP tlags as part
of the meta-data fields 705A, 705B . . . for the resultant
floating-point vector operand data element with a set of FP
flags derived from the logical OR of the FP tlags that are
associated with the mput argument tloating-point payload
data element(s) as well as those FP flags resulting from any
exceptions detected during the speculative execution of such
speculable vector operation. This operation 1s similar to that
shown and described above with respect to FIG. 6A,
although 1t 1s performed over corresponding pairs of the
meta-data fields for the two mput vector operand data
clements. Consequently, the FP flags associated with each
grven tloating-point payload data element reflects the excep-
tion history of the prior computation(s) that led to the given
floating-point payload data element. Such FP flag metadata
1s carried through all operations that can be speculated.
However, when a functional unit of the CPU 102 performs
a non-speculable operation that involves such a floating-
point vector operand data element and updates the machine
state (for example a store operation to memory or a write to
an operand storage clement), the functional umt can be
adapted to update a global set of the FP flags for the payload
data elements of the result vector operand for future use by
the program. This 1s similar to that shown and described
above with respect to FIG. 6B, although 1t 1s performed over
the number of meta-data fields 705A, 705B . . . of the
resultant vector operand data element 1n order to update a
global set of the FP tlags for the payload data elements of the
result vector operand.

FIG. 10 shows illustrative operations of the CPU 102 1n
loading operand data from the memory system 101 1n
conjunction with the processing of a load operation. The
load operation specifies a memory address corresponding to
one or more cache lines that stores requested operand data.
The requested operand data can represent a scalar data value
or a vector of data values.

In block 1001, the CPU 102 issues a load request to the
Memory System 101 (such as to the top level Data Cache of
the Memory System 101) for one or more cache lines that
stores the requested operand data.

In block 1003, the CPU 102 checks whether the load
request resulted 1n an error that has been received by the
CPU 102 and 1s of the type that should trigger the generation
of a NAR operand element. Such type can include the case
where the load request addresses a memory location for
which the program does not have access permission. I so,
the operation continues to block 1005; otherwise the opera-
tion continues to block 1007.

In block 1005, the CPU 102 generates meta-data and the
payload for the NAR operand element according to the
predefined internal format. If the NAR operand element 1s an
clement of a requested vector operand, the processing con-
tinues to block 1007 for the other parts of the requested
vector operand. If the NAR operand element represents the

requested scalar operand, the processing continues to block
1011 as described herein.
In block 1007, the CPU 102 generates meta-data for the

requested operand data according to the predefined internal
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format for the case where the requested operand data ele-
ment (or an element of a requested vector data element) 1s
not a NAR. Such meta-data can be based on the semantics
of the encoding of the load operation corresponding to the
load request. For example, semantically distinct loadbyte,
loadshort, loadword and loaddouble operations can be used
to specily the element width of a requested scalar operand.
Such operations can be specified by diflerent opcodes that
distinguish such operations from one another and from other
operations that belong to the instruction set architecture of
the computer processor. In this case, the loadbyte operation
corresponds to a scalar data operand of 1-byte, the loadshort
operation corresponds to a scalar data operand of 2-bytes,
the loadword operation corresponds to a scalar operand of
4-bytes, and the loaddouble operation corresponds to a
scalar operation of 8-bytes. Similarly, semantically distinct
loadSIMDbyte, loadSIMDshort and loadSIMDword opera-
tions can be used to specily the payload element width of a
requested vector operand. In this case, the loadSIMDbyte
operation corresponds to a payload data element of 1-byte,
the loadSIMDshort operation corresponds to a payload data
clement of 2-bytes, and the loadSIMDword operation cor-
responds to a payload data element of 4-bytes. Alternatively,
there can be a single generic load instruction that takes the
intended tag as an argument.

In block 1009, the CPU 102 generates the payload for the
requested operand data according to the predefined internal
format for the case where the requested operand data (or an
clement of a requested vector data) 1s not a NAR. Such
payload data can be derived (copied) from the results of the
load request for the requested operand data.

In block 1011, the CPU 102 physically associates the
meta-data and payload of the scalar operand data element
according to the predefined format of the scalar operand data
clement (or physically associates the meta-data and payload
data elements according to the predefined format for the
vector operand data element).

In block 1013, the CPU 102 stores the meta-data and
payload as part of the scalar operand data element con-
structed 1n block 1011 (or stores the meta-data and payload
data elements of the vector operand data element con-
structed 1n block 1011) as a umtary logical data element 1n
one or more operand storage elements that are sized to fit the
operand storage element.

FIG. 11 shows illustrative operations of the CPU 102 in
storing operand data into the memory system 101 1n con-
junction with the processing of a store operation. The store
operation specifies a memory address corresponding to one
or more cache lines that will store the operand data. The
operand data can represent a scalar data value or a vector of
data values.

In block 1101, the CPU 102 processes an operand data
clement (a scalar or vector operand data element) in the
internal format of the CPU 102 as well as the memory
address corresponding to one or more cache lines that will
store the payload of such operand data element. The operand
data element processed by the CPU 102 can be read from an
operand storage element of the CPU 102 or provided
directly from a functional unit of the CPU 102.

In block 1103, the CPU 102 checks whether the meta-data
and payload of the operand data element and/or the memory
address that will store the payload of such operand data
clement specifies a NAR. If so, the operation continues to
block 1105; otherwise the operation continues to block 1107.

In block 1105, the CPU 102 raises a fault such that 1t can
be specially handled by the CPU as appropriate and the
processing ends.
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In block 1107, the CPU 102 checks whether the meta-data
and pavload of the operand data element and/or the memory
address that will store the payload of such operand data
clement specifies a None. If so, the operation continues to
block 1109; otherwise the operation continues to block 1111.

In block 1109, the CPU 102 does nothing and thus skips
the store operation and the processing ends.

In block 1111, the CPU 102 uses the meta-data of the
operand data element to 1dentity the width (number of bytes)
of the operand data payload that 1s to be stored in the
Memory System.

In block 1113, the CPU 102 physically disassociates the
meta-data and payload of the scalar operand data element
according to the predefined format of the scalar operand data
clement (or physically disassociates the meta-data and pay-
load data elements according to the predefined format for the
vector operand data element).

In block 1115, the CPU 102 issues a store request to write
the payload (or payload data elements) of the operand data
clement into the Memory System at the specified memory
address. This can mvolve writing such data as one or more
cache lines 1nto the top level Data Cache of the Memory
System 101.

Width Polymorphism

CPUs often deal with data of more than one size. Thus, a
particular CPU may recognize native data in 1-, 2-, 4- and
8-byte widths or longer, and must perform analogous opera-
tions on each width. Usually mixed width operations are not
supported, but the instruction set admits the same set of
operations on data all of the same size, and instructions are
provided to transform data from one size to another. Thus,
a CPU may have a different add operation corresponding to
different byte widths, such as an addbyte operation for the
single byte wide, an addshort operation for 2-byte width, an
addword operation for the 4-byte width, and an addlong
operation for the 8-byte width. The CPU may also have
operations to convert a byte to a short (2-bytes), short to a
word (4-bytes) and a word to a long (8-bytes), and vice-
versa.

The number of permutations of these width-sensitive
operations can increase rapidly with increase in the number
of distinct supported widths, which complicates the instruc-
tion set and the software and hardware that must deal with
it. Some machines reduce the clutter by providing conver-
sions only to and from some canonical length, or do not
provide sized variants for operations like add, forcing the
program to perform explicit conversions or multi-instruction
sequences. While this approach does reduce 1nstruction set
clutter, 1t makes programs bigger and slower.

Many modern machines also support single-instruction-
multiple-data mstructions (SIMD) which operate in parallel
on groups ol data all of the same size. Thus, a single
instruction might perform eight byte-width add operations 1n
parallel, whereas another might perform four short-width
add operations in parallel. These SIMD instructions are
distinct from the ordinary scalar add operations, although
the operation they perform on each SIMD element 1s (usu-
ally) 1dentical to that performed on single scalar data by the
corresponding scalar 1nstruction.

Thus, istruction sets are usually a selection from the
cross product comprising the basic semantic operation (add,
multiply and so on), the scalarity (whether single scalar data
or SIMD parallel data), and width (commonly some power
of two number of bytes). It 1s not common for the mstruction
set to support the tull cross product because 1t 1s so volu-
minous. Instead, only a selection of those combinations
thought by the designer to be most usetul are provided. This
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lack of orthogonally complicates the task of the compiler
and other tools that must generate the instructions.

The scalarity tag of the meta-data for both scalar operand
data elements and vector operand data elements as described
herein can be used to remove the width and scalarity factors
from the instruction set. Instead of conveying this informa-
tion 1n the operation encoding, 1t 1s conveyed by the scalarity
tag of the meta-data that i1s part of the scalar and vector
operand data elements that are processed by the CPU 102.
Thus, 1n essence, the operation says “add”, while the data
itsell says “I am a one byte scalar” or “I am a SIMD vector
of shorts”. This 1s shown schematically in FIG. 12. In order
to support this feature, the scalar and vector operand data
clements (including the meta-data and payload of such
operand data elements) are stored in the operand storage
clements (e.g., belt, register file, special purpose registers
and/or scratchpad) of the CPU 102 that are referenced by an
addressing scheme (such as an logical belt address for the
belt, a register index for a register file or special purpose
register, or a scratchpad address for the scratchpad). The
meta-data and payload parts of the respective scalar and
vector operand data elements are read from and written to
such operand storage elements as a unitary logical data
clement using the addressing scheme of the operand storage
clements. For example, a scalar operand storage element
stored 1n the belt at a logical belt address “b7”” can be read
from this operand storage element as a unitary logical data
clement using the logical belt address “b7”. In another
example, a vector operand storage element stored 1n the belt
at a logical belt address “b3” can be read from this operand
storage element as a unitary logical data element using the
logical belt address “b3”. The read and write operations that
access the operand storage elements for processing the
unitary operand data eclements are operations that deal
jointly with the operand data values and associated metadata
together as unitary operand data elements. Furthermore, the
data paths within the CPU 102 can be configured to carry the
meta-data and payload parts of the scalar and vector operand
data elements as a unitary logical data element, and the
functional units of the CPU 102 can be arranged to imput the
meta-data and payload parts of the scalar and vector operand
data elements as needed, process the width signals from the
scalarity tag of the operand data element, rather than from
the operation encoding, and configure themselves to process
the operand data elements of the designated width as dic-
ated by the input width signals.

For example, consider an add operation on a machine that
supports 8-byte data as the largest size together with a
functional unit that 1s configured as a 64-bit adder with the
usual carry tree or chain. If the data claims to be (1s tagged
as) one-byte scalars then all bits after the least significant
cight bits will be disabled to save power. If the data claims
to be 4-byte words then bits after the least significant 32 bits
are disabled, and so on. If the data claims to be a vector
operand of bytes then all 64 bits participate, but the carry
propagation 1s broken every eight bits to produce eight
independent one-byte add operations. If the data claims to be
a vector operand of 32-bit words then the carry propagation
1s broken after the 32nd bit to produce two independent
4-byte add operations, and so on. Other functional units can
be organized equivalently.

Note that this structure permits detection of a number of
categories of software error that are not usually caught. A
conventional instruction set typically obtains operands from
registers and returns results to registers, where the register 1s
large enough to hold any size of operand and 1s indicated
only by number. Consequently, on a machine without width
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tagging 1t 1s possible to compute a one-byte value and place
it 1n a register, and later to use that register 1n a word-sized
operation, which 1s typically an error. Similarly, trying to
add a one-byte datum to a four-byte datum 1s probably an
error. Lastly, some kinds of operations are simply not
meaningiul when applied to certain operand sizes—tloating-
point operations applied to one-byte data for example. These
semantic violations can be detected and cause the condition
to be reported to the program or operating system.

Furthermore, the processing performed by the functional
units of the CPU 102 can support diflerent categories
(flavors) of operations. For example, programming lan-
guages vary in the way they treat integer overtlow that
results from an unsigned integer add operation. Four pos-
sible variations are shown in FIG. 13. The functional units
can be configured to support one or more of the four
variations of the unsigned integer add operation (labeled
addu, addux, addus and adduw as shown). Note that 1n the
case of the addux variation, the scalar NAR can be used to
indicate the overtlow error condition for the operation as
appropriate. Similar adaptations can be made to support
various error conditions for a wide variety of speculable
operations.

Furthermore, the CPU 102 can support a scalar widen
operation that increases the size of a scalar operand data
clement argument and a scalar narrow operation that reduces
the size of a scalar operand data element argument as shown
schematically 1n FIG. 14A. Such operations can be specified
by different opcodes that distinguish such operations from
one another and from other operations that belong to the
istruction set architecture of the computer processor. For
example, the scalar widen operation can double the width of
the payload of the scalar operand data element argument and
update the scalarity tag of the result scalar operand data
clement as appropriate, and the scalar narrow operation can
half the width of the payload of the scalar operand data
clement argument and update the scalarnity tag of the result
scalar operand data element as appropriate. The CPU 102
can also support a vector widen operation that increases the
s1ze of a payload data elements of a vector operand data
clement argument and a vector narrow operation that
reduces the size of the payload data elements of a vector
operand data element argument as shown schematically 1n
FIG. 14B. For example, the vector widen operation can
generate two result vector operand data elements whose
payload data elements are double the width of the payload
data elements of the vector operand data element argument.
The scalanty tags of the two result vector operand data
clements are based on the scalarity tag of the vector operand
data element argument, which 1s updated to reflect the
double width of the payload data elements as appropriate.
The vector narrow operation can operate on two vector
operand data element arguments and produce a single result
vector operand data element whose data elements are half
the width of the payload data elements of the two vector
operand data element arguments. The scalarity tag of the
single result vector operand data element 1s generated to
reflect the half width of the payload data elements as
appropriate. These operations can be useful to transform the
s1ze ol the operand data 1nto a designated size supported by
the functional units of the CPU 102 when needed.

Note that 1t 1s possible to extend the operand data meta-
data from the CPU proper into the memory hierarchy, so that
every memory location (in cache or external memory)
carries both operand data and 1ts associated meta-data (or
parts thereot). However, this 1s diflicult and expensive to do
with modern ofi-the-shelf memory technology. Conse-
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quently, the meta-data tagging of the operand data can be
used only within the CPU proper and the operand data stored
in the memory 1s untagged and thus not associated with any
meta-data. In this case, the processing of the load operation
that transfer data from the memory system 101 into the CPU
102 (e.g., loadbyte, loadshort, loadword, loaddouble, load-
SIMD operations) are extended to generate the appropriate
meta-data for the requested operand data and physically
associate the meta-data with the requested operand data 1n
the internal storage elements of the CPU 102. Alternatively,
there can be a single generic load instruction that takes the
intended tag as an argument. Furthermore, the processing of
the store operations that transfer data from the CPU 102 into
the memory system 101 are extended to disassociate the
meta-data from the payload data of the requested operand
data elements for storage of the payload data into the
memory system 101 (without the meta-data associated there-
with). Note that there 1s no need for the corresponding
storebyte, loadshort, storeword, storedouble, storeSIMD
operations because the scalarity tag of the meta-data con-
veys the width of the payload data being stored.

Note that the operand data meta-data could possibly be
extended to carry type information that conveys the type of
the scalar operand or vector elements (e.g., integer, floating-
point type, decimal, fraction, etc.) as well as width, so that
for example the same add operation could be used for both
integer and floating-point data.

Conditional Pick Operation

Conditional branches are expensive 1n modern hardware.
For example, consider the case where the program code
contains a conditional branch of the form:

if (a==0)

b=c+2;

clse

b=e-1;:
In this case, the branch 1s costly because of the possibility of
a mis-prediction of its direction and the necessary subse-
quent tlush of the instruction decode pipeline. Consequently,
many CPUs possess the capability to conditionally perform
certain kinds of operations without the necessity of actually
changing the flow of control, a technique called guarding. If
we use “?” applied to the condition predicate to indicate that
the following operation 1s conditional, the compiler might
transform the above expression into:

t1=c+2;

t2=e-1;

t3=a=—=0;

t37b=t1;

13 7b=t2;

That 1s, the add and subtract operations are speculatively
executed into temporaries, as 1s the non-speculative compare
operation, and then both moves are executed conditionally
but with opposite conditions so that only one takes eflect.
The result requires only two execution cycles: one with the
add, subtract, and compare, and one with both conditional
moves. As a result the potentially expensive branch has been
removed.

CPU architecture designs vary considerably in the way
that they elide branches through conditional operations. In
some cases only certain kinds of operations (commonly
moves as 1n this example) may be made conditional. In other
architectures the instruction set offers a conditional skip
capability, where the condition 1s evaluated 1n one 1nstruc-
tion and the following instruction 1s executed or skipped
depending on the condition. This two-instruction sequence
takes two 1nstruction cycles because the second 1nstruction
takes a cycle whether skipped or executed, but saves the
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expensive branch and permits conditional execution of any
kind of nstruction. In another design, every (or most)
instructions can be made conditional by including a condi-
tion to be evaluated (the guard) as part of the instruction.
Like a conditional skip, this permits making any kind of
instruction conditional, but takes only a single instruction
cycle. However, 1t costs the instruction space for the guard
even for unconditional instructions.

The CPU 102 of the present disclosure employs a different
approach to elide branches. This approach employs a con-
ditional selector operation (referred to herein as a scalar pick
operation) that conditionally chooses one of two scalar
operand data elements arguments (or one of two vector
operand data element arguments) as 1ts result based on the
Boolean value of a control scalar operand data element
input. The scalar pick operation can be specified by an
opcode that distinguishes such operation from other opera-
tions that belong to the instruction set architecture of the
computer processor. For sake of description, the scalar pick
operation can be denoted with the “?:” as shown schemati-
cally in FIG. 15A. I the Boolean value of the control scalar
operand data element 1s true (1), the first operand data
clement mmput (scalar or vector source operand “17) 1is
selected for the result. If the Boolean value of the control
scalar operand data element 1s false (*0”), the second
operand data element input (scalar or vector source operand
“07) 1s selected for the result. In the example shown, because
the Boolean value of the control scalar operand data element
1s true (*17”), the first scalar source operand “1”” input (whose
value 1s “127) 1s selected for the result. The scalar pick
operation 1s performed by hardware circuitry of the CPU
102.

An example of hardware circuitry that performs the scalar
pick operation 1s shown in FIG. 15B. The hardware circuitry
includes a bufler circuit 1501 that i1s configured to store the
control scalar operand and respective buller circuits 1503 A,
15038 that are configured to store the two scalar operand
data arguments (or one of two vector operand data argu-
ments), respectively. The hardware circuitry further includes
a multiplexer circuit 1505 that operates under control of a
mux control signal derived from the Boolean value of the
control scalar operand stored in the bufler circuit 1501 to
perform bit-wise multiplexing that copies the bit values of
either the source operand “0” argument (scalar or vector
source operand “0”) stored in bufler circuit 1503A or the bit
values of the source operand “1” argument (scalar or vector
source operand “17) stored i1n bufler circuit 1503B to the
result bufler circuit 1507. In this configuration, the result
bufler circuit 1507 holds the resultant scalar operand (or
vector operand) for output. Other suitable hardware 1mple-
mentations can be used as well.

The CPU 102 of the present disclosure can also employ a
vector-based conditional selector operation (referred to
herein as a vector pick operation) that conditionally chooses
one of the two scalar payload data elements pairwise over
the corresponding payload data elements of two vector
operand data element arguments as part of its result vector
based on the corresponding Boolean values of a control
vector operand data element input. The vector pick operation
can be specified by an opcode that distinguishes such
operation from other operations that belong to the instruc-
tion set architecture of the computer processor. For sake of
description, the vector pick operation can be denoted with
the “?:” as shown schematically in FIG. 16 A. If the Boolean
value of the first scalar payload data element of the control
vector mput 1s false (“0”), the first scalar payload data
clement of the vector source operand “0” 1s selected for the
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result vector. If the Boolean value of the first scalar payload
data element of the control vector mput 1s true (*17°), the first
scalar payload data element of the vector source operand “1”
1s selected for the result vector. If the Boolean value of the
second scalar payload data element of the control vector
iput 1s false (*0”"), the second scalar payload data element
of the vector source operand “0” 1s selected for the result
vector. If the Boolean value of the second scalar payload
data element of the control vector mput 1s true (*17), the
second scalar payload data element of the vector source
operand “1” 1s selected for the result vector. These opera-
tions are repeated for the Boolean values of the remaining,
scalar payload data elements of the control vector input. In
the example shown, because the Boolean value of the first
scalar payload data element of the control vector mput 1s
talse (*0”), the first scalar payload data element of the vector
source operand “0” (the “20” value) 1s selected for the result
vector. Because the Boolean value of the second scalar
payload data element of the control vector input 1s true (“17),
the second scalar payload data element of the vector source
operand “1” (the “16” value) 1s selected for the result vector.
Because the Boolean value of the third scalar payload data
clement of the control vector input 1s true (*17), the third
scalar payload data element of the vector source operand “1”
(the “17” value) 1s selected for the result vector. Because the
Boolean value of the fourth scalar payload data element of
the control vector mput 1s false (*0”), the fourth scalar
payload data element of the vector source operand “0” (the
“12” value) 1s selected for the result vector. The vector pick
operation 1s performed by hardware circuitry of the CPU
102.

An example of hardware circuitry that performs the vector
pick operation 1s shown in FIG. 16B. The hardware circuitry
includes similar circuit elements of FIG. 15B that are
replicated for each scalar element of the control vector input.
Specifically, the circuitry for a particular scalar element of
the control vector input includes a bufler circuit 1601 that 1s
configured to store the scalar element of the control vector
input and respective bufler circuits 1603A, 1603B that are
configured to store the two corresponding scalar elements of
the vector operand data arguments, respectively. The hard-
ware circuitry further includes a multiplexer circuit 1605
that operates under control of a mux control signal derived
from the Boolean value of the scalar element of the control
vector mput stored in the bufler circuit 1601 to perform
bit-wise multiplexing that copies the bit values of either the
corresponding scalar element of the vector source operand
“0” argument stored 1n bufler circuit 1603 A or the bit values
of the corresponding scalar element of the vector source
operand “1” argument stored 1n bufler circuit 16038 to the
result buffer circuit 1607 for the corresponding element of
the result vector. In this configuration, the result bufler
circuits 1607 hold all of the elements of the resultant vector
for output. Other suitable hardware implementations can be
used as well.

The scalar pick operation can be used to transform the
example expression mnto the following:

t1=c+2;

t2=e-1;

t3=a=—=0;

t4=t37t1:12; **scalar pick operation™*

b=t4;

Note that it 1s not possible to use the scalar pick operation
to make some arbitrary operation conditional, the way a
guard or conditional skip can do. In addition, a scalar pick
operation does not lend 1tself to code which has only one of
the two possibilities.
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For example, consider the following code sequence:
1f (a==0)
b=2;

A conditional move operation (or the guard or skip equiva-
lent) can be used to transform this sequence into the fol-
lowing;:

t1=a=—=0;

t17b=2;
In contrast, the scalar pick operation can be used to trans-
form this sequence into the following:

t1=a=—=0;
t2=t172:b; **scalar pick operation™*
b=t2;

In this case, the value 1s copied over onto itself down one of
the paths. This may be more expensive than the conditional
move form.

However, the scalar pick operation can be used 1n con-
junction with a None operand as described herein 1 order to
conditionally select a single scalar or vector operand data
clement based on the Boolean value of a control scalar
operand data element input. For example, consider the
following example code sequence:

1f (a==0)

b=2:

The scalar pick operation can be used 1n conjunction with a
None operand to translate this code sequence to:

t1=a=—=0;

t2=t1?72:None; **scalar pick operation with None**

b=t2;

Note that after the scalar pick operation, the value of t2 1s
either 2 or None depending on the value of the Boolean
condition t1. If the value of the Boolean condition t1 1s false
(*0”), then the value of {2 1s selected as 2. If the value of the
Boolean condition t1 1s true (1), then the value of {2 1s
None. The following assignment b=t2 causes b to become 2
if the value of the Boolean condition tl is false (a does not
equal 0) or 1s skipped and the value of b remains unchanged
if the value of the Boolean condition t1 1s true (a equals 0).

Furthermore, the vector pick operation can be used 1n
conjunction with a None operand as described herein 1n
order to conditionally select a single scalar payload data
clement based on the Boolean value of a corresponding
payload element of a control vector. Examples of such
vector-based operations are described herein with respect to
the remaining operation.

Loop-Vectorization Control Operations

Performance of a CPU executing a program 1s largely
determined by how many operations the CPU can execute 1n
a given period of time. This number can be increased by
reducing the time 1t takes to execute a single instruction;
reducing the time while the CPU 1s not executing any
istructions because 1t 1s waiting for some resource to
become available; and by executing more than one 1nstruc-
tion at a time, 1n parallel. There have been many schemes
invented for the latter, and one of the more successful 1s
called SIMD (single-instruction-multiple-data) processing.

A SIMD 1instruction 1s processed and 1ssued by the CPU
in the same manner as non-SIMD (scalar) instructions.
However, the hardware of the functional units for processing
the SIMD instruction 1s replicated so that some number (the
replication factor or SIMD {fanout) of identical adders,
multipliers, or other functional unit performs the operations
of the SIMD instruction. The operations are carried out 1n
parallel. Each functional unit receives diflerent data one
which to apply the operation. The data operated on by a
single umt 1s typically called an element, so that fanout
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number of elements will participate 1n the computation
specified by the SIMD 1nstruction.

Commonly the elements participating in a SIMD 1nstruc-
tion are logically contiguous with each other and may be
thought of as a short section or vector of a larger array of
data. If a particular operation 1s to be performed for every
clement of some large array of data, a scalar functional unit
must execute the mstruction for each array element, whereas
a SIMD 1nstruction can execute a vector at a time, reducing
the number of nstructions executed by a factor of the SIMD
fanout. For example, 11 the fanout 1s 4 and the number of data
clements 1n the array 1s 32, then performing the operation on
a scalar machine will require executing the instruction
(typically 1n a loop) 32 times, but on the SIMD machine will
require execution only 8 times.

Of course, this works only when the number of elements
1s evenly divisible by the SIMD fanout. If there were 30
clements 1n the array rather than 32, then the last vector
would contain only two elements and not the full fanout of
4. There have been a number of schemes developed to
address this problem. In some CPUs the hardware contains
an eclement counter that disables the computation for ele-
ments that are “past the end”. In others a bit mask serves the
same purpose, where a bit in the mask corresponds to each
vector element and tells the instruction whether or not the
operation 1s to be performed for that element. However, the
most common approach 1s for the supporting functional
units of the CPU to operate only on full vectors, with
compiler generated code performing the computation for
any left-over eclements using scalar rather than SIMD
instructions. Thus, 1n the example of 30 elements, a main
loop would execute SIMD 1nstructions seven times, han-
dling 28 elements, and then following code would do the last
two elements with scalar instructions.

This suflices for situations when the actual number of
clements 1s known or can be computed at the start of the
main loop, which 1s the case when the entirety of an array
1s to be computed upon. Loops of thus form are called
tor-loops after the usual programming language notation for
such an action.

However, there 1s an important class of computations
where the number of elements 1s not and cannot be known
at the beginning, but 1s determined by some characteristic of
the data itself. For example, the operation may be to be
performed only on the elements up to the first one that has
some particular value, say zero. Loops of this form are called
while-loops, also after the programming language notation
that expresses the notion. Searches (where an array 1s
scanned looking for a particular value) are a typical
example. In general, while-loop code cannot be handled by
the supporting functional units of the CPU because the
termination condition might happen on any element and so
the SINE) mstruction would incorrectly apply the operation
to those elements that are in the vector but after the termi-
nating element, a condition called SIMD overrun.

Compilers may still generate SIMD instructions for
while-loops when 1t can be determined that executing the
operation on overrun elements 1s innocuous. However, most
operations have side eflects that make overrun execution
semantically invalid. SIMD 1nstructions can also be used
when 1t 15 possible to reverse the eflect of overrun execution
alter the loop terminates, and some CPUs contain special
hardware to do this reversal. However, such clean-up code
1s often very tricky to get right and substantially increases
the size of the generated code, with unfortunate conse-
quences 1n cache behavior. Lastly, 11 there i1s substantial
work to be done on each vector beyond checking for the

5

10

15

20

25

30

35

40

45

50

55

60

65

24

termination condition then the compiler may generate scalar
code that checks the elements one by one for termination,
and then does the rest of the work 1n SIMD 11 the termination
hasn’t happened. All these possibilities complicate the com-
piler considerably and are a frequent source of bugs and
semantic corner cases. Still, the benefit of successiul pro-
gram ol SIMD 1s so great that essentially all modern CPUs
contain some SIMD 1nstructions, even though they cannot
be used with while-loops.

The CPU 102 of the present disclosure can employ a
vector operation (referred to herein as the vector smear
operation) that permits one or more SIMI) 1nstructions to be
processed as part of a while-loop, even when the operations
are not innocuous when performed on overrun elements. No
clean-up code or scalar pretesting 1s needed. The vector
smear operation can be specified by an opcode that distin-
guishes such operation from other operations that belong to
the nstruction set architecture of the computer processor. It
1s applicable to any implementation supporting bit mask
cnables for SIMD operations, a common SIMD feature.

The vector smear operation operates on an mput vector
argument of Boolean values (such as a vector operand data
clement of Boolean values). In one example, the Boolean
false 1s represented by binary zero and the Boolean true 1s
represented by a binary one. The input vector argument 1s
typically the result of a SIMD relational operation applied to
a data vector, for example a comparison for equality with
zero. In this case, each element of the mput vector argument
would then indicate whether the corresponding data element
satisfied the predicate. The vector smear operation produces
a resultant vector (and possibly an extra element) of Boolean
values whose pattern corresponds to the first true element 1n
the 1nput vector argument that satisfies the predicate (1.e.,
represents the Boolean true value). The result vector can be
stored 1n one or more operand storage data elements (or 1n
memory) as speciiied by an index (or memory address) that
1s part of the encoding of the vector smear operation. The
index of operand storage data elements used to store the
result vector can possibly be omitted from the encoding of
the vector smear operation where temporal addressing 1s
used to store results, such as where the operand storage
clements are organized as a logical belt as described i U.S.
patent application Ser. No. 14/312,159 filed on Jun. 23,
2014, commonly assigned to assignee of the present appli-
cation and incorporated by reference above in 1ts entirety.
Whereas a normal SIMD operation performs the same
operation on every element of the data vector in parallel, the
vector smear operation logically examines the elements of
the input vector argument 1n sequence, comparing each
clement with the scalar value true. The result vector (and
possibly an extra element) contains a Boolean false value for
cach element up to the first true element (or possibly for one
aiter the first true element), and contains Boolean true values
for the elements of the result vector thereafter. This result
vector (and possibly the extra element) may then be used as
a guard mask to control the execution of SIMD operations
as part ol a while-loop, so that those operations are applied
only to valid elements and not to overrun elements, or are
applied only to overrun elements and not to valid elements.
Note that the last element result vector (or possibly the extra
clement) of the vector smear result shows whether the
termination condition had been detected. This can be used to
terminate the while loop. Note that the operation can return
a separate additional scalar result that shows whether the test
was satisiied by any element.

In one embodiment, the CPU 102 can support one or both
of two different variants of vector smear operations, referred
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to as an exclusive vector smear operation and an inclusive
vector smear operation. The exclusive and exclusive vector
smear operations can be specified by different opcodes that
distinguish such operations from one another and from other
operations that belong to the instruction set architecture of 5
the computer processor.

The exclusive vector smear operation 1s shown schemati-
cally in FIG. 17A. This operation operates on an input vector
argument of Boolean values, and produces a result vector
that has the same number of elements of the input vector 10
argument. The result vector contains a Boolean false value
for each element up to the first true element of the nput
vector argument, and contains Boolean true values for the
clements of the result vector thereafter. The result vector can
be stored 1n one or more operand storage data elements (or 15
in memory) as specified by an index (or memory address)
that 1s part of the encoding of the exclusive vector smear
operation. The mdex of operand storage data elements used
to store the result vector can possibly be omitted from the
encoding of the exclusive vector smear operation where 20
temporal addressing 1s used to store results.

An example of hardware circuitry that performs the
exclusive vector smear operation for an mput vector argu-
ment of four Boolean values 1s shown i FIG. 17B. The
hardware circuitry includes bufler circuits 1701A, 17018, 25
1701C, 1701D that are configured to store the elements (the
four Boolean values) of the input vector argument, respec-
tively. The hardware circuitry further includes a bufler gate
1703 that copies the first element (the first one of the four
Boolean values) of the input vector argument as stored 1n the 30
bufler circuit 1701A to a bufler circuit 1707A for the first
clement of the output vector. The hardware circuitry further
includes a two-mnput OR gate 1705A. The output of the
butler circuit 1703 (which corresponds to the first Boolean
value of the input vector argument) i1s supplied to one input 35
of the OR gate 1705A. The second element (the second one
of the four Boolean values) of the mput vector argument as
stored 1n the bufler circuit 1701B 1s supplied to the other
input of the OR gate 1705A. The output of the OR gate
1705 A (which corresponds to the logical OR of the first and 40
second Boolean values of the input vector argument) 1s
stored 1n the butler circuit 17078 for the second element of
the output vector. The output of the OR gate 1705A 1s also
supplied to one mput of the OR gate 1705B. The third
clement (the third one of the four Boolean values) of the 45
input vector argument as stored in the bufler circuit 1701C
1s supplied to the other input of the OR gate 1705B. The
output of the OR gate 1705B (which corresponds to the
logical OR of the third Boolean value and the previous
Boolean values of the input vector argument) 1s stored 1n the 50
bufler circuit 1707C for the third element of the output
vector. The output of the OR gate 1703B 1s also supplied to
one mput of the OR gate 1705C. The fourth element (the
fourth one of the four Boolean values) of the mput vector
argument as stored 1n the bufler circuit 1701D 1s supplied to 55
the other mput of the OR gate 1705C. The output of the OR
gate 1705C (which corresponds to the logical OR of the
tourth Boolean value and the previous Boolean values of the
input vector argument) 1s stored 1n the bufler circuit 1707D

for the third element of the output vector. In this configu- 60
ration, the result bufler circuits 1707A, 17078, 17070,

1707D hold all of the four elements (the four Boolean
values) of the resultant vector for output. Other suitable
hardware implementations can be used as well.

The 1nclusive vector smear operation 1s shown schemati- 65
cally in FIG. 18A. This operation operates on an input vector
argument of Boolean values, and produces a result vector

26

that has the same number of elements of the mput vector
argument as well as an additional element. The result vector
contains a Boolean false value for each element up to and
including the first true element of the input vector argument,
and contains Boolean true values for the elements of the
result vector thereafter. The additional element of the result
indicates whether the last element (or any previous element)
of the input vector argument contains a Boolean true value.
If the result vector contains all Boolean false values and the
additional element of the result indicates that the last ele-
ment of the mput vector argument contains a Boolean true
value, then the result indicates that only the last element of
the input vector argument contains a Boolean true value. The
result vector and the additional element of the result can be
stored 1n operand storage data elements (or in memory) as
specified by indices (or a memory address) that 1s part of the
encoding of the inclusive vector smear operation. The 1ndi-
ces of the operand storage data elements used to store the
result vector and additional result element can possibly be
omitted from the encoding of the inclusive vector smear
operation where temporal addressing 1s used to store results.

An example of hardware circuitry that performs the
inclusive vector smear operation for an mput vector argu-
ment of four Boolean values 1s shown 1 FIG. 18B. The
hardware circuitry includes bufler circuits 1801 A, 18018,
1801C, 1801D that are configured to store the elements (the
four Boolean values) of the mput vector argument, respec-
tively. The hardware circuitry further includes a bufler
circuit 1807A that stores a false Boolean value for the first
clement of the output vector as well as a buller gate 1803
that copies the first element (the first one of the four Boolean
values) of the input vector argument as stored in the bufler
circuit 1801A to a bufler circuit 1807B for the second
clement of the output vector. The hardware circuitry further
includes a two-input OR gate 1805A. The output of the
bufler gate 1803 (which corresponds to the first Boolean
value of the input vector argument) 1s supplied to one input
of the OR gate 1805A. The second element (the second one
of the four Boolean values) of the mput vector argument as
stored 1n the bufler circuit 1801B 1s supplied to the other
input of the OR gate 1805A. The output of the OR gate
1805 A (which corresponds to the logical OR of the first and
second Boolean values of the input vector argument) 1s
stored 1n the bufler circuit 1807C for the third element of the
output vector. The output of the OR gate 1805A 15 also
supplied to one mput of the OR gate 1805B. The third
clement (the third one of the four Boolean values) of the
input vector argument as stored in the bufler circuit 1801C
1s supplied to the other mput of the OR gate 1805B. The
output of the OR gate 1805B (which corresponds to the
logical OR of the third Boolean value and the previous
Boolean values of the input vector argument) is stored 1n the
bufler circuit 1807D for the fourth element of the output
vector. The output of the OR gate 1805B 1s also supplied to
one mput of the OR gate 1805C. The fourth element (the
fourth one of the four Boolean values) of the mput vector
argument as stored 1n the bufler circuit 1801D 1s supplied to
the other mput of the OR gate 1805C. The output of the OR
gate 1805C (which corresponds to the logical OR of the
fourth Boolean value and the previous Boolean values of the
input vector argument) 1s stored in the bufler circuit 1809 for
the additional scalar output of the operation. In this con-
figuration, the result bufller circuits 1807A, 18078, 1807C,
1807D hold the four elements (the four Boolean values) of
the resultant vector and the result builer circuit 1809 holds
the additional scalar value for output. Other suitable hard-
ware 1implementations can be used as well.
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Consider as an example a while loop that increments all
clements of an array up to but not including the first element
with a zero value. In the language C this would be the
program:

int 1=0;

while (A[i]!'=0) {

++Al1];

++1;

;

The machine code for the body of this while loop would
perform the following actions:

fetch the next vector Vi of elements from the array

perform a SIMD equal compare of the fetched vector Vi

with the value zero to yield a vector V, of Boolean
values, where a true 1n an element position indicates
that the data element was zero and a false indicates that
it was non-zero. Note that there may be zero, one, or
more matches.

perform a vector smear operation (such as the exclusive

vector smear operation) on the vector V, to vield a
resultant guard vector V ; of Booleans

perform a SIMD increment operation on the vector Vi,

under the control of the guard vector V ., where only
clements before the first Boolean true of the guard
vector V ; are incremented

store the partially incremented vector Vi back into the

array

if the last element of the guard vector V  1s true (or other

test for termination 1s true) then exit the loop, and it
false then branch back and repeat the loop
Thus, the entire while loop 1s done a whole vector at a time,
with no cleanup code. This dramatically improves the per-
tformance of the CPU on while loops, at no cost other than
the implementation of vector smear itsell, which 1s quite
minor i modern CPU technology.

Some while loops perform their action on all elements up
to but not including the element for which the terminating,
condition 1s true, whereas others perform 1t for all elements
up to and including the terminating element. The previous
example was the former case, while the Unix utility strcpy
1s the latter case. The strcpy function 1s defined to copy a
sequence of bytes from one location to another, up to and
including a terminating null byte. This can be implemented
by the inclusive vector smear operation, and the resulting
vector of Boolean values may then be used as a guard
bitmask in the same manner as previously described.

This description reflects the vector smear operation oper-
ating on a single vector of Boolean values. However, the
underlying notion can be applied in other contexts as well.
For example, a dyadic smear taking a data vector and a
scalar could scan the data looking for a match with the
scalar, and produce a result vector of Boolean values that has
talse elements to the point of match and true thereaiter. Or
the sense of the test could be reversed, replacing true with
false and vice versa in the result as described. Lastly 1n some
SIMD implementations the SIMD relational operators
directly produce a guard bitmask rather than a vector of
Boolean values. The vector smear operation can then be
defined to work on the guard bits themselves, propagating
the first true bit into all subsequent bits 1n the mask. The
mask can then be used to disable subsequent SIMD opera-
tions on overrun elements.

The CPU 102 of the present disclosure can also employ a
vector operation (referred to herein as the remaining opera-
tion) that permits one or more SIMD instructions to be
processed as part of a counting loop. The remaining opera-
tion can be specified by an opcode that distinguishes such

10

15

20

25

30

35

40

45

50

55

60

65

28

operation from other operations that belong to the instruc-
tion set architecture of the computer processor. A counting
loop 1s one that executes a fixed number (the count) of
iterations, determined either at compile time (static sched-
uling) or by computation at run time (dynamic scheduling),
as opposed to while loops which 1terate until a condition
predicate 1s satisfied. The counting loop 1s vectorized when
several iterations are executed simultaneously in parallel,
using vector data which are short arrays of values rather than
scalar data which are single values. Each scalar iteration 1s
mapped to one element of the vector, and the loop 1s
executed 1n SIMD style.

The number of data elements 1n the vector (the vector
length) determines how many of the scalar iterations can be
executed 1n parallel 1n one vector iteration. For implemen-
tation reasons the vector length can be limited to a power of
two. A problem occurs then the overall count for the loop 1s
incommensurate with the vector length. For example, if the
count 1s 58 and the vector length 1s eight, then seven vector
iterations, each the equivalent of eight scalar iterations,
could be executed for a total of 56 scalar iterations. How-
ever, the remaining two 1terations do not {ill a whole vector.
Simply doing another vector iteration would be incorrect
and potentially disastrous to the program.

The common method to deal with incommensurate vec-
tors 1s to use vector iterations as long as vectors can be filled,
and then drop to scalar iterations for the remainder. This
approach requires duplicating the code, and the scalar itera-
tions are slow.

The remaining operation of the present disclosure can
avoid the use of scalar iterations. Instead, a partially-occu-
pied vector iteration 1s executed under control of a vector
mask of Boolean values whose contents indicate which of
the implied scalar iterations are valid and which are to be
skipped. This vector mask 1s used as the predicate argument
to the vector pick operation in which one of the data
arguments 1s a vector ol data corresponding to both the
correct 1terations and the iterations past the end of the count,
and the other data argument 1s a vector of None values for
the 1terations past the end of the count. In this configuration,
the resulting vector from the vector pick operation contains
valid data for the iterations within the count and None for the
iterations beyond the count. This partial vector may then be
used 1n an ordinary vector iteration using the same code as
was used for full vectors, and the semantics of None ensure
that the 1terations beyond the count have no visible program
consequence.

In addition, the remaining operation returns a second
result, a scalar Boolean value. This Boolean value 1s false 1t
the count was greater than the vector length (implying that
further vector iterations are necessary) and true otherwise
(1implying that no further vector iterations are necessary).
This Boolean may be tested by the conditional branch that
closes the loop.

To use the remaining operation, the inmitial count as
determined by the loop conditions 1s decremented by the
vector length during each vector iteration. The count value
before the decrement 1s used as an 1nput argument to the
remaining operation along with a width argument that indi-
cates the desired width of the result vector as shown 1n FIG.
19A. The count and width input arguments are used to create
a vector of Boolean values with a number of leading false
values as specified by the count input argument. This result
vector 1s referred to as a Boolean vector mask 1 FIG. 19A.
The remaining operation also produces a scalar Boolean
value which 1s false 11 the count was greater than the vector
length (1implying that further vector iterations are necessary)
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and true otherwise (implying that no further vector iterations
are necessary). This scalar Boolean value 1s referred to as an
exit flag in FIG. 19A. The exit flag may be tested by the
conditional branch that closes the counting loop. As part of
the 1teration of the counting loop, the vector mask produced
by the remaining operation can be used to create whole or
partial data vectors using the vector pick operation as
described herein. Iteration of the counting loop can be
terminated when the exit flag indicates that all count scalar
iterations have been performed.

An example of hardware circuitry that performs the
remaining operation 1s shown in FIG. 19B. The hardware
circuitry includes bufler circuits 1901A and 1901B that hold
the count argument (labeled “A”) and the width argument
(labeled “B”) of the remaining operation. The hardware
circuitry further includes an integer comparator circuit 1903
that compares the count argument (“A”) as stored in the
bufler circuit 1901 A to the width argument (“B”) stored in
the bufler circuit 1901B. The integer comparator circuit
1903 outputs enable signals EN1, EN2 and EN3 according
to the result of the compare operation. When the count
argument (“A”) 1s greater than the width argument (“B”), the
integer comparator circuit 1903 outputs the EN1 signal that
enables the logic circuit 1905A. When enabled by the EN1
signal, the logic circuit 1905A outputs a result vector of all
talse Boolean values (where the width argument dictates the
width of the result vector) and a result scalar value of false.
The result vector output by the logic circuit 1905A 1s stored
in a bufler circuit 1907 for the result vector. In this case, the
result scalar output by the logic circuit 1905A 1s stored 1n a
bufler circuit 1909 for the result scalar. When the count
argument (“A”) 1s equal to the width argument (*B”), the
integer comparator circuit 1903 outputs the EN2 signal that
enables the logic circuit 1905B. When enabled by the EN2
signal, the logic circuit 19058 outputs a result vector of all
talse Boolean values (where the width argument dictates the
width of the result vector) and a result scalar value of true.
In this case, the result vector output by the logic circuit
1905B 1s stored in the bufler circuit 1907 for the result
vector. The result scalar output by the logic circuit 1905B 1s
stored 1n the bufler circuit 1909 for the result scalar. When
the count argument (“A”) 1s less than the width argument
(“B”), the integer comparator circuit 1903 outputs the EN3
signal that enables the logic circuit 1905C. When enabled by
the EN3 signal, the logic circuit 1905C operates as a priority
encoder to output a result vector according to the value of
count argument stored in the bufler circuit 1901 A. The width
argument stored in the bufler circuit 1901B dictates the
width of the result vector. This operation create a vector of
Boolean values with a number of leading false values as
specified by the count input argument. The logic circuit
1905C also produces a result scalar value of false. In this
case, the result vector output by the logic circuit 19035C 1s
stored 1n the bufler circuit 1907 for the result vector. The
result scalar output by the logic circuit 19035C 1s stored in the
bufler circuit 1909 for the result scalar. Other suitable
hardware implementations can be used as well.

The CPU 102 of the present disclosure can also employ a
vector operation (referred to herein as the satisly operation)
that permits one or more SIMD 1nstructions to be processed
as part of a vectorized while loop for searches. The satisty
operation can be specified by an opcode that distinguishes
such operation from other operations that belong to the
instruction set architecture of the computer processor. In this
case, the while loop 1terates until a condition predicate is
satisfied, and then returns the number of iterations executed
betfore satisfaction. When a search condition 1s not satistied
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by any of the elements of a vector then 1t 1s simple to add the
vector length to the running count of iterations. However, 1t
the condition 1s satisfied within a vector then only the scalar
iterations before satisfaction should be counted, and the
program uses this count to determine the number of itera-
tions executed before satistaction.

According to the present disclosure, the while loop can
execute the search in such a way that it computes a vector
of Boolean wvalues, where each Boolean value indicates
whether the search was satisfied in the corresponding 1tera-
tion. Note that there may be several satisiying iterations but
only the first 1s of interest. This Boolean satisfaction vector
1s then an argument to the satisfied operation, which pro-
duces two results. The first 1s a count of the leading
unsatisfied iterations, suitable for adding to the running total
ol unsatisfied iterations for the search. The second 1s a
Boolean scalar that indicates whether any of the iterations
satisfied the condition; this 1s used to control exit from the

while loop.
Variations

The meta-data associated with scalar and vector operand
data elements can also be configured with a reserved value
to 1ndicate a Vacant operand, which 1s used to specily
operand storage elements (e.g., logical address for belt
operands) that have not vet received a value. The most
common example of a Vacant operand 1s to specily one or
more operand storage elements (e.g., logical address for belt
operands) within a called function that are not occupied by
arguments to the function. The Vacant operand can also be
used to specily registers allocated for a new function frame
activation that have not yet been used. This notion of a
Vacant operand 1s distinct from a None operand. A None has
a width and scalarity, and individual elements of a vector
may be None operands. In essence a None operand 1s an
operand that 1s present but 1s to be ignored. A Vacant operand
1s simply not there, and 1t 1s not meaningiul for one element
of a vector to be Vacant. Any read reference to a Vacant
operand can be treated as an error and can trigger a fault on
the CPU. Such a fault typically indicates a hug in the
compiler or other program that generated the code making
the reference.

The time between detection of a fault and 1ts report when
a NAR 1s processed by a non-speculable operation can be
quite lengthy, especially 11 the NAR 1s live across interven-
ing calls. This may make 1t diflicult for the programmer to
determine the point of detection and thence the cause of the
problem. To make the location activity easier, the CPU 102
of the present disclosure can employ a mode 1n which there
1s no speculative execution at all and all faults are reported
immediately at point of detection of a NAR. In one embodi-
ment, speculation can be selectively disabled by software
that operates on the program code at program load time.
Such software can transform the program code such that all
speculation 1s omitted and the operations are scheduled such
that all flow of control that any given operation depends on
has been fully resolved belfore the given operation 1s 1ssued
for execution by the CPU. This transformation ensures that
any detected fault 1s necessarily genuine.

In support of this mode, the CPU can be configured to
immediately report any NAR produced by an operation as a
fault without waiting for the NAR to be processed by a
non-speculable operation.

This specific mode may be an
attribute of a process, a thread, or a function 1nvocation, but
would normally be active whenever the CPU 1s executing
code that has been compiled without speculation. Further-
more, this specific mode may be static (1.e., set when a
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program marked as no-speculation 1s loaded) or may be
dynamically entered and exited by an operation, as for
example by a debugger.

It 1s also contemplated that certain programming tools
may need to be able to inspect operands that might be NARSs
and examine or change the payload or NAR status. Chief
among these tools are debuggers, which must be able to
show the user the fact of occurrence or value of a NAR
without triggering a NAR fault within itself. The CPU may
use specific operations (referred to as a splitNAR operation
and joinNAR operation) to deal with this case. The split-
NAR and joinNAR operations can be specified by diflerent
opcodes that distinguish such operations from one another
and from other operations that belong to the struction set
architecture of the computer processor. Specifically, the
splitNAR operation accepts an operand as argument, and
produces two operands as its result. One result contains the
NAR bit(s) of the argument as payload data; the other result
contains the original payload of the argument, with 1ts NAR
bit(s) cleared. If neither result 1s a NAR, 1t can safely be
stored to memory by a normal store operation. The joinNaR
operation reassembles the original operand from the previ-
ously split parts.

This pair of operations turns a single operand into two,
which will then require two loads and two stores to run-out
to memory and back. This 1s the best that can be done 1t the
original operand was a vector or vector-sized scalar, but 1s
unnecessarily costly otherwise. Consequently, the CPU may
use additional operations (referred to as the jamNAR opera-
tion and the unjamNAR operation) to address this 1ssue. The
jamNAR operation splits the NAR bit(s) from 1ts argument
operand 1n the same way as splitNAR operation, but instead
of returming them with the payload as two results 1t concat-
enates them in the high bits of a single double-width result,
with the original payload in the low bits. This requires only
a single store and load to run-out to memory, a significant
saving over use of the splitNAR operation. The unjamNAR
operation naturally reverses this process, accepting a
double-width operand with NAR bits and payload in high
and low parts and returning a single-width operand with the
actual NAR bits (1f any) set appropriately. The jamNAR and
unjamNAR operations can be specified by different opcodes
that distinguish such operations from one another and from
other operations that belong to the instruction set architec-
ture of the computer processor.

These operations can save (and restore) the NAR bit(s) of
the operand because the values of the NAR bit(s) 1s known
only at run time. The operations can be configured to not
save (and restore) the width element of the meta-data of the
operand because the width for any operand 1s known at
compile time, and can be re-asserted when the value 1is
restored.

It can happen that there are more transient operands than
fit 1 the fast operand storage elements of the CPU (such as
the registers or belt). In this case, such transient operands
can be explicitly stored to memory by code 1n the program,
and subsequently filled back from memory when (and 1f)
they are needed again by the executing program. However,
the operands are still speculative at storage time, and may
contain NARSs that subsequent control flow will determine to
have been from ofl the taken path. A simple store of the
operand would then deliver an incorrect fault.

It 1s possible to split an operand by executing a splitNAR
operation and then store the two results using a normal store
operation. However, the splitNAR operation adds 1ts results
to fast operand storage which can further degrade perfor-
mance when there are more transient operands than fit in the
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fast operand storage elements of the CPU. To address this
issue, the CPU can employ spill and fill operations that
combine the effect of splitNAR and store (for spill opera-
tions) to a scratchpad and load and joinNAR (for {fall
operations) from the scratchpad. In the spill operation, the
split operand 1s not stored 1n fast operand storage elements
of the CPU but instead stored in the scratchpad. In the fill
operation, the split parts of the operand are not in fast
operand storage elements of the CPU but instead only the
reconstructed operand 1s stored in the fast operand storage
clements of the CPU. Details of an exemplary scratchpad
and associated spill and {ill operations are described 1n U.S.
patent application Ser. No. 14/311,988 filed on Jun. 23,
2014, commonly assigned to assignee of the present appli-
cation and incorporated by reference above 1n 1ts entirety.
Note that the spill and fall operations implicitly address the
current stack frame. The spill operation saves the width tags
well as the NAR bits, and the fill operation restores it.
Consequently, the spill operation needs only a frame offset
and the address of a fast operand storage element as argu-
ments, and fill operation needs only the oflset, making them
very compact.

There have been described and 1llustrated herein several
embodiments of a computer processor and corresponding
method of operations. While particular embodiments of the
invention have been described, 1t 1s not intended that the
invention be limited thereto, as 1t 1s intended that the
invention be as broad in scope as the art will allow and that
the specification be read likewise. For example, the micro-
architecture and memory organization of the CPU as
described herein 1s for illustrative purposes only. A wide
variety of CPU microarchitectures can embody the improve-
ment and methods described herein, including microarchi-
tectures that employ in-order execution, microarchitectures
that employ out-of-order execution, superscalar microarchi-
tectures, VLIW microarchitectures, single-core microarchi-
tectures, multi-core microarchitectures, and combinations
thereol. In another example, the functionality of the CPU as
described herein can be embodied as a processor core and
multiple 1nstances of the processor core can be fabricated as
part of a single integrated circuit (possibly along with other
structures). It will therefore be appreciated by those skilled
in the art that yet other modifications could be made to the
provided invention without deviating from 1its spirit and
scope as claimed.

What 1s claimed 1s:

1. A computer processing method comprising:

providing a memory system that includes cache and main

memory, and at least one processor core that 1s operably
coupled to the memory system, wherein the at least one
processor core includes at least one functional unit and
a plurality of operand storage elements separate from
the memory system, wherein the plurality of operand
storage elements store operand data values and asso-
ciated meta-data as unitary operand data elements, and
wherein the at least one functional unit performs opera-
tions that access respective unitary operand data ele-
ments stored in the plurality of operand storage ele-
ments;

in response to a load operation that specifies a memory

address for loading at least one operand data value,
operating the at least one processor core to construct a
given unitary operand data element by generating meta-
data corresponding to the load operation, using the
memory address to load the at least one operand data
value from the memory system to the at least one
processor core, and combining the meta-data generated
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by the at least one processor core with at least one
payload item that includes the at least one particular
operand data value loaded from the memory system;
and

in response to a store operation that specifies a memory
address for storing the at least one operand data value
of the given unitary operand data element, operating
the at least one processor core to process the given
umtary operand data element by disassociating the
meta-data from the at least one payload item of the
given unitary operand data element, and storing the at
least one operand data value of the at least one payload
item of the given unitary operand data element 1n the
memory system;

wherein the meta-data that 1s part of the given unitary
operand data element specifies 1) an operand type that
represents one of a scalar operand type and a vector
operand type, and 11) a width of the at least one operand
data value; and

wherein the meta-data that 1s part of the given unitary
operand data element 1s different from opcodes that
specily the operations performed by the at least one
functional unit of the at least one processor core.

2. The computer processing method according to claim 1,
wherein:

the at least one functional unit accesses the respective
umtary operand data elements stored in the plurality of
operand storage elements by hardware operations that
deal jointly with the operand data values and the
associated metadata together as the unitary operand
data elements.

3. The computer processing method according to claim 1,
wherein:

the scalar operand type represents a single scalar operand
data value, and the vector operand type represents a
number of scalar operand data values.

4. The computer processing method according to claim 3,
wherein:

the single scalar operand data value represented by the
scalar operand type has one of a number of predefined
widths 1n bytes.

5. The computer processing method according to claim 4,
wherein:

the meta-data of the given unitary operand data element
specifies the scalar operand type and further specifies
one of the number of predefined widths 1n bytes.

6. The computer processing method according to claim 3,
wherein:

the number of scalar operand data values represented by
the vector operand type each have one of a number of
predefined widths 1n bytes.

7. The computer processing method according to claim 6,
wherein:

the meta-data of the given unitary operand data element
specifies the vector operand type and further specifies
one of the number of predefined widths in bytes.

8. The computer processing method according to claim 1,
wherein:

the meta-data and at least one payload item of another
unmitary operand data element stored 1n the plurality of
operand storage elements have a configuration that
represents a Not-A-Result operand that 1s indicative of
an error condition.

10

15

20

25

30

35

40

45

50

55

60

65

34

9. The computer processing method according to claim 8,
wherein:
the at least one payload item that 1s part of the unitary
operand data element that represents the Not-A-Result
operand includes debugging information.
10. The computer processing method according to claim
9, wherein:
the debugging information includes information that
reflects a nature of the error condition and/or informa-
tion that provides an indication of program location for
the error condition.
11. The computer processing method according to claim
8. wherein:
the at least one functional unit 1s configured such that,
when processing a speculable operation that operates
on the unitary operand data element representing the
Not-A-Result operand, the unitary operand data ele-
ment representing the Not-A-Result operand propa-
gates to a result of the speculable operation.
12. The computer processing method according to claim
8. wherein:
the at least one functional unit 1s configured such that,
when processing a non-speculable operation that oper-
ates on the unitary operand data element representing
the Not-A-Result operand, the at least one functional
unit generates a fault that requires special handling.
13. The computer processing method according to claim
1. wherein:
the meta-data and at least one payload data item of
another unitary operand data element stored in the
plurality of operand storage elements have a configu-
ration that represents a None operand that 1s indicative
of a missing operand value.
14. The computer processing method according to claim
13, wherein:
the at least one payload data 1item that 1s part of the unitary
operand data element that represents the None operand
includes debugging information.
15. The computer processing method according to claim
14, wherein:
the debugging information includes information that pro-
vides an indication of program location for the missing
operand.
16. The computer processing method according to claim
13, wherein:
the at least one functional unit 1s configured such that,
when processing a speculable operation that operates
on the unitary operand data element that represents the
None operand, the unitary operand data element that
represents the None operand propagates to a result of
the speculable operation.
17. The computer processing method according to claim
13, wherein:
the at least one functional unit 1s configured such that,
when processing a non-speculable operation that oper-
ates on the unitary operand data element that represents
the None operand, the at least one functional unit skips
the non-speculable operation and does not update state
information.
18. The computer processing method according to claim
1. wherein:
the meta-data of the given unitary operand data element
specifies a scalar operand type that represents a float-
ing-point number and further specifies a set of tloating-
point error condition flags.
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19. The computer processing method according to claim
18, wherein:

the at least one functional unit 1s configured such that,
when processing a floating-point operation on the uni-
tary data element of the scalar operand type that
represents the tloating-point number, the set of floating-
point error condition flags specified by the meta-data of
the unitary data eclement are logically combined
together with the set of tloating-point error condition

flags that result from the floating-point operation by a
Boolean OR operation i order to derive the set of
tfloating point error condition flags for a resultant scalar
operand.

20. The computer processing method according to claim 15
18, wherein:

the at least one functional unit 1s configured such that,
when processing a non-speculable operation on the
umtary data element of the scalar operand type that
represents the floating-point number, the set of floating-
point error condition flags specified by the meta-data of
the unitary data element are used to update a set of
global floating point error registers.

20

21. The computer processing method according to claim
1, wherein:

25

the memory system 1s configured such that it does not
include the meta-data of the given unitary operand data
clement.

36

22. The computer processing method according to claim
1, wherein:
the at least one processor core further includes data paths

configured to carry the meta-data and the at least one
operand data value of the given unitary operand data
clement.

23. The computer processing method according to claim
1. wherein:
the at least one functional unit 1s configured to mnput the

meta-data and the at least one operand data value of the
given unitary operand data element, process width
signals from the meta-data of the given unitary operand
data element, and process the at least one operand data
value of designated width as dictated by the width
signals.

24. The computer processing method according to claim
1. wherein:
the memory address of the load operation specifies at least

one cache line of the memory system that contains the
at least one particular operand data value, and the
memory address of the store operation specifies at least
one cache line of the memory system that will store the
at least one particular operand data value of the at least
one payload item of the given unitary operand data
clement.

25. The computer processing method according to claim
1. wherein:
the meta-data of the given unitary operand data element 1s

generated based on encoding of the load operation.
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