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COMPUTER PROCESSOR EMPLOYING
CACHE MEMORY STORING BACKLESS
CACHE LINES

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present disclosure claims priority from U.S. Provi-
sional Patent Appl. No. 61/890,891, filed on Oct. 15, 2013,
entitled “Cache Support for a Computer Processor,” herein
incorporated by reference in its entirety.

BACKGROUND
1. Field
The present disclosure relates to computer processing
systems.

2. State of the Art

A computer processor and the program which it executes
needs places to put data for later reference. A computer
processor will typically have many such places, each with its
own trade off of capacity, speed of access, and cost. Usually
these are arranged in a hierarchal manner referred to as the
memory system of the computer processing system, with
small, fast, costly places used for short lived small data and
large, slow and cheap places used for what doesn’t fit in the
small, fast, costly places. The hierarchical memory system
typically includes the following components arranged in
order of decreasing speed of access:

register file or other form of fast operand storage;

one or more levels of cache memory (one or more levels
of the cache memory can be integrated with the processor
(on-chip cache) or separate from the processor (off-chip
cache);

main memory (or physical memory), which is typically
implemented by DRAM memory and/or NVRAM memory
and/or ROM memory;

controller card memory; and

on-line mass storage (typically implemented by one or
more hard disk drives).

In many computer processing systems, the main memory
can take several hundred cycles to access. The cache
memory, which is much smaller and more expensive but
with faster access as compared to the main memory, is used
to keep copies of data that resides in the main memory. If a
reference finds the desired data in the cache (a cache hit) it
can access it in a few cycles instead of several hundred when
it doesn’t (a cache miss). Because a program typically has
nothing else to do while waiting to access data in memory,
using a cache and making sure that desired data is copied
into the cache can provide significant improvements in
performance.

The address space of the program can employ virtual
memory, which provides for two different purposes in mod-
ern processors. One purpose, hereinafter paging, permits the
totality of the address spaces used by all programs to exceed
the capacity of the main memory attached to the processor.
The other purpose, hereinafter address extension, permits
the totality of the address spaces used by all programs to
exceed the address space supported by the processor.

Paging can be used to map the virtual addresses used by
the program at page granularity to physical addresses rec-
ognized by the main memory or to devices such as disk that
are used as paging store. A program reference to an
unmapped virtual address is treated as an error condition and
reported to the program using a variety of methods, but
usually resulting in program termination. The set of valid
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virtual addresses usable without error by a program is called
its address space. The address mapping is represented by a
set of mapping tables maintained by the operating system as
it allocates and de-allocates memory for the various running
programs. Every virtual address must be translated to the
corresponding physical address before it may be used to
access physical memory.

Systems with caches differ in whether cache lines store
tags defined by a physical address (physical caching) or a
virtual address (virtual caching). In the former, virtual
addresses must be translated at least before they are used to
match against the physical addressed tags of the cache; in the
latter, translation occurs after cache access and is avoided if
the reference is satisfied from cache.

Address extension is not needed when the space encom-
passed by the representation of a program address is large
enough. Common representations of program address space
are four bytes (32 bits) and eight bytes (64 bytes). The
four-byte representation (yielding a four gigabyte address
space) is easily exceeded by modern programs, so addresses
(and address spaces) must be reused with different meanings
by different programs and address extension must be used.
Reuse of the same address by different programs is called
aliasing. The computer processing system must disambigu-
ate aliased use of addresses before they are actually used in
the memory hierarchy.

In a computer processing system employing physical
caching, alias disambiguation occurs prior to the caches. In
a computer processing system employing virtual caching,
disambiguation can occur after the caches if the caches are
restricted to hold only memory from a single one of the
aliased addressed spaces. Such a design requires that cache
contents be discarded whenever the address space changes.
However, the total space used by even thousands of very
large programs will not approach the size representable in 64
bits, so aliasing need not occur and address extension is
unnecessary in 64-bit machines. A computer processing
system that does not use address extension permits all
programs to share a single, large address space; such a
design is said to use the single-address-space model.

It happens that the same hardware can be used both to
disambiguate aliases and to map physical memory, and such
is the common arrangement. Because alias disambiguation
is typically performed prior to physical caches, using the
common hardware means that page mapping occurs their
too. When paging and alias disambiguation are in front of
physical caches, it is also common to use the same hardware
for access control, restricting the kinds of access and the
addresses accessible to the program. The hardware enforced
restrictions comprise the protection model of the processor
and memory system. Protection must apply to cache
accesses, so the protection machinery must be ahead of the
caches. Hence it is common to have one set of hardware that
intercepts all accesses to the memory hierarchy and applies
protection restriction, alias disambiguation, and page map-
ping all together. Because all this must be performed for
every reference to memory, and specifically must be per-
formed before cache can be accessed, the necessary hard-
ware is power hungry, large and on the critical path for
program performance.

SUMMARY OF THE INVENTION

This summary is provided to introduce a selection of
concepts that are further described below in the detailed
description. This summary is not intended to identify key or
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essential features of the claimed subject matter, nor is it
intended to be used as an aid in limiting the scope of the
claimed subject matter.

Tlustrative embodiments of the present disclosure are
directed to a computer processing system with a hierarchical
memory system having at least one cache and physical
memory. The hierarchical memory system is organized as
virtual memory by a plurality of page table entries that
represent a mapping between virtual addresses and corre-
sponding physical addresses. A processor has execution
logic that generates memory requests that are supplied to the
hierarchical memory system. The at least one cache stores a
plurality of cache lines including at least one backless cache
line. The backless cache line can be referenced by a virtual
address that is not backed by any valid physical address
space of the physical memory of the of the hierarchical
memory system.

The backless cache line can be referenced by a virtual
address that does not correspond to any page table entry
whose physical address points to valid physical address
space of the physical memory of the hierarchical memory
system. In this case, illegal virtual addresses can be recog-
nized by operation of a protection lookaside buffer (PLB) as
described herein. In one embodiment suitable for virtual
caches, the backless cache line can be referenced by a virtual
address that does not have a corresponding page table entry.
In another embodiment suitable for physical caches, the
backless cache line can be referenced by a virtual address
that corresponds to a page table entry whose physical
address points outside the valid physical address space of the
physical memory of the hierarchical memory system.

The backless cache line can be transformed to a backed
state when evicted from cache of the hierarchical memory
system or when written to the physical memory of the
hierarchical memory system as part of a write-through cache
scheme. The page table entries can be updated to reflect the
backed state of the cache line. The transformation of the
backless cache line to the backed state can involve allocating
physical address space of the physical memory of the
hierarchical memory system for storing the backless cache
line. The physical address space of the physical memory of
the hierarchical memory system that is allocated to store the
backless cache line can be a single-cache-line-sized page in
the physical address space of the physical memory of the
hierarchical memory system. The backless cache line can be
stored temporarily in the single-cache-line-sized page of the
physical memory of the hierarchical memory system and
thereafter moved to a larger-sized page of the physical
memory of the hierarchical memory system. The larger-size
page can be specified by execution of an operating system on
the computer processing system.

In one embodiment, the cache of the hierarchical memory
system can include at least one virtual cache.

In another embodiment, the cache of the hierarchical
memory system can include at least one physical cache. In
this case, the backless cache line can be referenced by a
virtual address that corresponds to a page table entry whose
physical address points outside the valid physical address
space of the physical memory of the hierarchical memory
system. The page table entry corresponding to the backless
cache line can include a predefined marking that identifies
the backless cache line as being backless and thus not
associated with a valid physical address range within the
physical memory of the hierarchical memory system. The
backless cache line can be transformed to a backed state
when evicted from cache of the hierarchical memory system
or when written to the physical memory of the hierarchical
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memory system as part of a write-through cache scheme.
The transformation of the backless cache line to the backed
state involves allocating valid physical address space of the
physical memory of the hierarchical memory system for
storing the backless cache line and updating the page table
entries to reflect the backed state of the cache line.

A respective cache line can be initially written to a cache
in the hierarchical memory system as a backless cache line
until transformed to a backed state.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram of a computer
processing system according to an embodiment of the pres-
ent disclosure.

FIG. 2 is a schematic diagram of exemplary pipeline of
processing stages that can be embodied by the computer
processor of FIG. 1.

FIG. 3 is schematic illustration of components that can be
part of the execution/retire logic of the computer processor
of FIG. 1 according to an embodiment of the present
disclosure.

FIG. 4 is schematic illustration of components that can be
part of the execution/retire logic and hierarchical memory
system of the computer processor of FIG. 1 according to an
embodiment of the present disclosure where the cache
memory of the hierarchical memory system are virtual
caches.

FIG. 5 is a flow chart that illustrates exemplary operations
carried out by the memory controller of FIG. 4 in processing
a load request where the cache memory employs a write-
back scheme.

FIG. 6 is a flow chart that illustrates exemplary operations
carried out by the memory controller of FIG. 4 in processing
an evicted cache line as part of a lowering process where the
cache memory employs a write-back scheme.

FIG. 7 is a flow chart that illustrates exemplary operations
carried out by the memory controller of FIG. 4 in processing
a store request where the cache memory employs a write-
through scheme.

FIG. 8 is schematic illustration of components that can be
part of the execution/retire logic and hierarchical memory
system of the computer processor of FIG. 1 according to
another embodiment of the present disclosure where the
cache memory of the hierarchical memory system are physi-
cal caches.

FIG. 9 is a flow chart that illustrates exemplary operations
carried out by the MMU 118 and other parts of the memory
hierarchy of FIG. 8 in conjunction with the processing a load
request where the cache memory employs a write-back
scheme.

FIG. 10 is a flow chart that illustrates exemplary opera-
tions carried out by the MMU 118 and other parts of the
memory hierarchy of FIG. 8 in conjunction with the pro-
cessing a store request where the cache memory employs a
write-back scheme.

FIG. 11 is a flow chart that illustrates exemplary opera-
tions carried out by the memory controller of FIG. 8 in
processing an evicted cache line as part of a lowering
process where the cache memory employs a write-back
scheme.

FIG. 12 is a flow chart that illustrates exemplary opera-
tions carried out by the memory controller of FIG. 8 in
processing a store request where the cache memory employs
a write-through scheme.
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DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Tlustrative embodiments of the disclosed subject matter
of the application are described below. In the interest of
clarity, not all features of an actual implementation are
described in this specification. It will of course be appreci-
ated that in the development of any such actual embodiment,
numerous implementation-specific decisions must be made
to achieve the developer’s specific goals, such as compli-
ance with system-related and business-related constraints,
which will vary from one implementation to another. More-
over, it will be appreciated that such a development effort
might be complex and time-consuming but would neverthe-
less be a routine undertaking for those of ordinary skill in the
art having the benefit of this disclosure.

As used herein, the term “operation” is a unit of execu-
tion, such as an individual add, load, store or branch
operation.

The term “instruction” is a unit of logical encoding
including zero or more operations. For the case where an
instruction includes multiple operations, the multiple opera-
tions are semantically performed together.

The term “hierarchical memory system” is a computer
memory system storing instructions and operand data for
access by a processor in executing a program where the
memory is organized in a hierarchical arrangement of levels
of memory with increasing access latency from the top level
of memory closest to the processor to the bottom level of
memory furthest away from the processor.

The term “cache line” or “cache block™ is a unit of
memory that is accessed by a computer processor. The cache
line includes a number of bytes (typically 4 to 128 bytes).

For computer processing systems that employ virtual
memory with paging, the amount of memory in the address
space of a program can change dynamically during the
execution of the program. For example, in Unix systems the
mmap( ) function call causes additional memory to be
allocated, while the munmap( ) function call returns previ-
ously allocated memory to the operating system for other
use. Many operating systems, including Unix, define that
newly allocated memory may be specified to contain the
value zero throughout. In addition, programs when initiated
are given an initial allocation of memory, a portion of which
may be defined as pre-initialized with zero. Furthermore, it
is common for operating systems to defer allocation and
initialization of main memory when an allocation of virtual
memory is requested by the program. The mapping of the
pages of the newly allocated virtual region is created and
entered in page table entries that are part of a TLB and page
table(s) managed by the operating system. The page table
entries can be configured to provide an indication (or
marking) that physical allocation of main memory has not
yet been performed for a respective page of virtual memory.
At first use of such a page, the marking is recognized and the
operating system allocates the physical memory, initializes
it, and replaces the page table entry with one indicating the
allocated physical memory. Such lazy allocation optimizes
the common situation in which programs request address
space that they never in fact use. Virtual memory address
space for which a mapping to a page of physical memory
exists is said to be “backed” and thus a cache line that is
located within a “backed” region or page of virtual memory
is said to be a “backed” cache line or a cache line having a
“backed” state. Virtual memory address space for which no
such mapping to a valid page of physical memory is said to
be “backless” and thus a cache line that is located within a
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“backless” region or page of virtual memory is said to be a
“backless” cache line or cache line having a “backless” state.

Because computer processing systems that utilize physi-
cal caching must have a physical address to reference cache,
all allocated virtual addresses must be backed by a page
table entry, or get one on first use. In contrast, computer
processing systems that utilize virtual caching do not need a
physical address to reference cache, so a mapping is not
necessary unless and until a reference is not satisfied from
cache or a cache line is evicted from cache. Thus, it is
possible to use “backless” virtual memory that has no
mapping and no allocated underlying backing to a page of
physical memory for certain cache lines.

In accordance with the present disclosure, a computer
processing system is provided that employs virtual memory
with paging where pages of physical memory are not
automatically created and initialized on first use. Instead, the
allocation and initialization of the pages of physical memory
depends on the nature of a given memory request. Specifi-
cally, the computer processing system maintains page table
entries that are configured to provide an indication (mark-
ing) that physical allocation of a corresponding page of
physical memory has not yet been performed. Such indica-
tion need not be explicitly stored by the page table entries,
but instead any memory request to a virtual address lacking
a corresponding page table entry can be deemed to refer to
a “backless” cache line that is located within a virtual
address space that lacks allocation of a corresponding valid
page of physical memory. Such indication is used to control
the behavior of the computer processing system in allocating
and initializing pages of physical memory for memory
requests that access the virtual memory. Such behavior can
depend on the nature of the access, whether the memory
system utilizes virtual caching or physical caching, and
whether the accessed cache line is present in cache (a cache
hit) or not present in cache (a cache miss). Whether such
information is maintained in the implicit manner as
described above, or is explicitly stored in a table or other
suitable data structure, may be freely chosen for the case
where the memory system utilizes virtual caching.

For the case where the memory system utilizes virtual
caching, a load request that hits in cache can be satisfied
from the cache normally, regardless of whether the mapping
provided by the page table entries of the system provides an
indication that the requested cache line is “backless” or
“backed.” For a load request that misses in cache for a
requested cache line that is “backed,” the page table entry
corresponding to the request cache line can be used to
translate the virtual address of the requested cache line to a
physical address, which is used to access physical memory
to satisfy the load request normally. For a load request that
misses in cache for a requested cache line that is “backless,”
a cache line with zero data bytes throughout can be returned
as result data to the processor. A new cache line can possibly
be written into cache, with the target virtual address and a
zero value for all data bytes of the cache line. There is
neither allocation of nor interaction with physical memory.
A store request that hits in cache can update the cache
normally, regardless of whether the mapping provided by the
page table entries of the system provide an indication that
the target cache line is “backless” or “backed.” For a store
request that misses in cache for a target cache line that is
“backed,” the page table entry corresponding to the target
cache line can be used to translate the virtual address of the
target cache line to a physical address, which is used to
access physical memory to satisfy the store request nor-
mally. For a store request that misses in cache for a target
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cache line that is “backless,” a new cache line can be written
in the cache, with the target virtual address and a zero value
for all data bytes of the target cache line. This new cache line
can then be updated with the value of data byte(s) specified
by the store request as if there had been no miss. There is
neither allocation of nor interaction with physical memory.

The effect of these operations is that programs on
machines with virtual caches can perform load and store
operations without previously allocating and initializing the
backing store (e.g., physical memory). All “backless” cache
lines can reside in cache, and there is no operating system
involvement for such load and store operations. If the
program discards a page while the cache lines of the page
resides only in cache, then usage of physical memory can be
avoided. However, “backless” cache lines can reside in
cache for only so long as the cache has capacity for them.
Eventually, unless the page is deallocated first, it will be
necessary for the cache to evict a backless cache line to
make space available for other cache lines that must be
created in or brought to cache. At that time, a physical page
on the backing store can be allocated and initialized with the
cache lines from cache or with zeroes for those parts of the
page that have no corresponding cache line as described
below. The effect of the eviction protocol is to transform the
page from a “backless” to a “backed” state.

For the case where the memory system utilizes physical
caching, the virtual address specified by each respective
memory request can be translated to a physical address
before checking cache. In this case, the physical address
stored in a page table entry may refer to a page without
underlying physical memory. This condition, which is
referred to as a “pending” status or marking, can be stored
as part of the page table entry for the corresponding page of
virtual memory. In this case, the corresponding cache line(s)
of the “pending” page of virtual memory is(are) “backless”
as there is neither allocation of nor interaction with any
meaningful and valid address space of physical memory.
Note that such “pending” marking is employed in systems
using physical caching. It is not used in systems with virtual
caches.

With physical caching, all load and store requests utilize
the page table entries of the translation lookaside buffer
(TLB) and page table(s) to translate the virtual address
specified by the request to a physical address. If the cache
line for the request is marked as “pending” or “backed” then
the physical address is present in the system’s TLB or page
table(s). However, if no corresponding page table entry
exists (the page table is “vacant” with respect to the target
cache line), then no such physical address exists.

If the cache line for the request hits in the TLB or page
table, then the physical address for the cache line as pro-
vided by the matching page table entry can be used to access
cache in order to satisfy the request as normally, regardless
of whether the page table entry for the cache line includes a
“pending” or “backed” marking.

If the cache line for the request misses in the TLB or page
table and thus the TLB and page table are “vacant” with
respect to a page table entry for the cache line, the computer
processing system allocates a physical address for a single-
line page within a “dummy” address space that does not
correspond to actual address space of physical memory,
creates a page table entry that associates the virtual address
of the cache line with the newly allocated physical address
for the single-line page, and marks the new page table entry
as “pending.” The load or store request then proceeds as if
the “pending” page table entry had been previously inserted
in the TLB and page table(s) of the system such that the
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newly allocated physical address for the single-line page is
used to access cache, if need be.

Thus, a load request that hits in the TLB or page table can
be satisfied from the cache normally, regardless of whether
the page table entry for the requested cache line has a
“pending” or “backed” marking. For a load request that
misses in both the TLB and the page table for the requested
cache line, the computer processing system allocates a
physical address for a single-line page within a “dummy”
address space that does not correspond to actual address
space of physical memory, creates a page table entry that
associates the virtual address of the requested cache line
with the newly allocated physical address for the single-line
page, and marks the new page table entry as “pending.” A
cache line with zero data bytes throughout is returned as
result data to the processor. A new cache line can possibly
be written into cache, with the single-line page physical
address and the zero value for all data bytes of the requested
cache line.

A store request that hits in the TLB or page table can be
satisfied from the cache normally, regardless of whether the
page table entry corresponding to the target cache line is
marked as “pending” or “backed.” For a store request that
misses in the TLB and page table, the computer processing
system allocates a physical address for a single-line page
within a “dummy” address space that does not correspond to
actual address space of physical memory, creates a page
table entry that associates the virtual address of the target
cache line with the newly allocated physical address for the
single-line page, and marks the new page table entry as
“pending.” A new cache line can be written in the cache,
with the single-line page physical address and a zero value
for all data bytes of the target cache line. This new cache line
can then be updated with the value of data byte(s) specified
by the store request as if there had been no miss.

An eviction of a cache line corresponding to a page table
entry marked as “pending” causes the computer processing
system to allocate a backed physical page for the “pending”
evicted cache line. The page table entry corresponding to the
“pending” evicted cache line is then updated such that future
references to the virtual address of the evicted cache line will
reach the new physical address instead of the old “pending”
address. In addition, the tags of all cache lines that are
located in the page of the “pending” evicted line that now
has backing can be changed to reflect the new physical
address for the page corresponding to the evicted cache line.

In one embodiment, the computer processing system can
employ two ways to effect the change from pending to
physical address for pre-existing cache lines that become
backed. In one, all such pre-existing cache lines are expelled
from cache to the backing memory at the new physical
address. If subsequently brought back to cache they will
have the physical address rather than the pending address in
cache. In another approach, the corresponding “pending”
pre-existing cache lines employs tags corresponding to their
“pending” addresses, and the primary page table entry(ies)
corresponding to such “pending” pre-existing cache lines
refer to the “pending” address. One or more new pending-
to-backed secondary page table entries are s created reflect-
ing the new allocation. Probes to cache are translated from
virtual to pending addresses using the primary page table
entries, while actual accesses to physical memory are trans-
lated from the “pending” address to the backed address
employing the secondary page table entries. The need for the
secondary address translation provided by the secondary
page table entries can be detected by the memory controller
because the “pending” address, while it lies within the
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physical address space, does not correspond to any actual
memory location. The memory controller then uses the
secondary page table entries to translate the unbacked
“pending” address to the backed physical address for the
actual access to memory. The secondary page table entries
can be kept as part of the TLB and page table(s) of the
computer processing system if the pending address space is
numerically disjoint from the virtual address space, or can be
kept in a dedicated side table.

In accordance with the present disclosure, a sequence of
instructions is stored in the memory system 101 and pro-
cessed by a CPU (or Core) 102 as shown in the exemplary
embodiment of FIG. 1. The CPU (or Core) 102 includes a
number of instruction processing stages including at least
one instruction fetch unit (one shown as 103), at least one
instruction buffer or queue (one shown as 105), at least one
decode stage (one shown as 107) and execution/retire logic
109 that are arranged in a pipeline manner as shown. The
CPU (or Core) 102 also includes at least one program
counter (one shown as 111), at least one L1 instruction cache
(one shown as 113), an L1 data cache 115 and a shared
instruction/data L2 Cache 117.

The L1 instruction cache 113, the LL1 data cache 115 and
the .2 cache are logically part of the hierarchy of the
memory system 101. The [.1 instruction cache 113 is a cache
memory that stores copies of instruction portions stored in
the memory system 101 in order to reduce the latency (i.e.,
the average time) for accessing the instruction portions
stored in the memory system 101. In order to reduce such
latency, the L1 instruction cache 113 can take advantage of
two types of memory localities, including temporal locality
(meaning that the same instruction will often be accessed
again soon) and spatial locality (meaning that the next
memory access for instructions is often very close to the last
memory access or recent memory accesses for instructions).
The L1 instruction cache 113 can be organized as a set-
associative cache structure, a fully associative cache struc-
ture, or a direct mapped cache structure as is well known in
the art. Similarly, the L1 data cache 115 is a cache memory
that stores copies of operands stored in the memory system
101 in order to reduce the latency (i.e., the average time) for
accessing the operands stored in the memory system 101. In
order to reduce such latency, the L1 data cache 115 can take
advantage of two types of memory localities, including
temporal locality (meaning that the same operand will often
be accessed again soon) and spatial locality (meaning that
the next memory access for operands is often very close to
the last memory access or recent memory accesses for
operands). The L1 data cache 115 can be organized as a
set-associative cache structure, a fully associative cache
structure, or a direct mapped cache structure as is well
known in the art. The shared L2 Cache 117 stores both
instructions and data. The L2 cache 117 can be organized as
a set-associative cache structure, a fully associative cache
structure, or a direct mapped cache structure as is well
known in the art. The hierarchy of the memory system 201
can also include additional levels of cache memory, such as
a level 3 cache, as well as main memory. One or more of
these additional levels of the cache memory can be inte-
grated with the CPU 202 as is well known. The details of the
organization of the memory hierarchy are not particularly
relevant to the present disclosure and thus are omitted from
the figures of the present disclosure for sake of simplicity.

The program counter 111 stores the memory address for
a particular instruction and thus indicates where the instruc-
tion processing stages are in processing the sequence of
instructions. The memory address stored in the program
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counter 111 can be used to control the fetching of the
instructions by the instruction fetch unit 103. Specifically,
the program counter 111 can store the memory address for
the instruction to fetch. This memory address can be derived
from a predicted (or resolved) target address of a control-
flow operation (branch or CALL operation), the saved
address in the case of a RETURN operation, or the sum of
memory address of the previous instruction and the length of
previous instruction. The memory address stored in the
program counter 111 can be logically partitioned into a
number of high-order bits representing a cache line address
($ Cache Line) and a number of low-order bits representing
a byte offset within the cache line for the instruction.

The instruction fetch unit 103, when activated, sends a
request to the L1 instruction cache 113 to fetch a cache line
from the L1 instruction cache 113 at a specified cache line
address ($ Cache Line). This cache line address can be
derived from the high-order bits of the program counter 111.
The L1 instruction cache 113 services this request (possibly
accessing lower levels of the memory system 101 if missed
in the L1 instruction cache 113), and supplies the requested
cache line to the instruction fetch unit 103. The instruction
fetch unit 103 passes the cache line returned from the L1
instruction cache 113 to the instruction buffer 105 for storage
therein.

The decode stage 107 is configured to decode one or more
instructions stored in the instruction buffer 105. Such decod-
ing generally involves parsing and decoding the bits of the
instruction to determine the type of operation(s) encoded by
the instruction and generate control signals required for
execution of the operation(s) encoded by the instruction by
the execution/retire logic 109.

The execution/retire logic 109 utilizes the results of the
decode stage 107 to execute the operation(s) encoded by the
instructions. The execution/retire logic 109 can send a load
request to the [L1 data cache 115 to fetch data from the L1
data cache 115 at a specified memory address. The [.1 data
cache 115 services this load request (possibly accessing the
L2 cache 117 and lower levels of the memory system 101 if
missed in the [L1 data cache 115), and supplies the requested
data to the execution/retire logic 109. The execution/retire
logic 109 can also send a store request to the [.1 data cache
115 to store data into the memory system at a specified
address. The L1 data cache 115 services this store request by
storing such data at the specified address (which possibly
involves overwriting data stored by the data cache and
lowering the stored data to the 1.2 Cache 117 and lower
levels of the hierarchical memory system).

The instruction processing stages of the CPU (or Core)
102 can achieve high performance by processing each
instruction and its associated operation(s) as a sequence of
stages each being executable in parallel with the other
stages. Such a technique is called “pipelining.” An instruc-
tion and its associated operation(s) can be processed in five
stages, namely, fetch, decode, issue, execute and retire as
shown in FIG. 2.

In the fetch stage, the instruction fetch unit 103 sends a
request to the L1 instruction cache 113 to fetch a cache line
from the L1 instruction cache 113 at a specified cache line
address ($ Cache Line). The instruction fetch unit 103 passes
the cache line returned from the L1 instruction cache 113 to
the instruction buffer 105 for storage therein.

The decode stage 107 decodes one or more instructions
stored in the instruction buffer 107. Such decoding generally
involves parsing and decoding the bits of the instruction to
determine the type of operation(s) encoded by the instruc-
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tion and generating control signals required for execution of
the operation(s) encoded by the instruction by the execution/
retire logic 109.

In the issue stage, one or more operations as decoded by
the decode stage are issued to the execution logic 109 and
begin execution.

In the execute stage, issued operations are executed by the
functional units of the execution/retire logic 109 of the
CPU/Core 102.

In the retire stage, the results of one or more operations
produced by the execution/retire logic 109 are stored by the
CPU/Core 102 as transient result operands for use by one or
more other operations in subsequent issue/execute cycles.

The execution/retire logic 109 includes a number of
functional units (FUs) which perform primitive steps such as
adding two numbers, moving data from the CPU proper to
and from locations outside the CPU such as the memory
hierarchy, and holding operands for later use, all as are well
known in the art. Also within the execution/retire logic 109
is a connection fabric or interconnect network connected to
the FUs so that data produced by a producer (source) FU can
be passed to a consumer (sink) FU for further storage or
operations. The FUs and the interconnect network of the
execution/retire logic 109 are controlled by the executing
program to accomplish the program aims.

During the execution of an operation by the execution
logic 109 in the execution stage, the functional units can
access and/or consume transient operands that have been
stored by the retire stage of the CPU/Core 102. Note that
some operations take longer to finish execution than others.
The duration of execution, in machine cycles, is the execu-
tion latency of an operation. Thus, the retire stage of an
operation can be latency cycles after the issue stage of the
operation. Note that operations that have issued but not yet
completed execution and retired are “in-flight.” Occasion-
ally, the CPU/Core 102 can stall for a few cycles. Nothing
issues or retires during a stall and in-flight operations remain
in-flight.

FIG. 3 is a schematic diagram illustrating the architecture
of an illustrative embodiment of the execution/retire logic
109 of the CPU/Core 102 of FIG. 1 according to the present
disclosure, including a number of functional units 201. The
execution/retire logic 109 also includes a set of operand
storage elements 203 that are operably coupled to the
functional units 201 of the execution/retire logic 109 and
configured to store transient operands that are produced and
referenced by the functional units of the execution/retire
logic 109. An interconnect network 205 provides a physical
data path from the operand storage elements 203 to the
functional units that can possibly consume the operand
stored in the operand storage elements. The interconnect
network 205 can also provide the functionality of a bypass
routing circuit (directly from a producer functional unit to a
consumer function unit).

In one embodiment shown in FIG. 4, the memory hier-
archy of the CPU/Core 102 includes several levels of cache,
such as the L1 instruction cache 113 (for example, with an
access time of three machine cycles), the [.1 data cache 115
(for example, with an access time of three machine cycles)
and the 1.2 instruction/data cache 117 (for example, with an
access time of 10 machine cycles), as well as main memory
101A (for example, with an access time of 400 machine
cycles). The caches store tags defined by virtual addresses
and thus are virtual caches. The protection model of the
system can be enforced by a protection lookaside buffer
(PLB) that can be viewed as part of the top level cache (L1
instruction cache 113 and/or the [.1 data cache 115) of the
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memory hierarchy. Specifically, the protection lookaside
buffer provides for access control, restricting the kinds of
access and the addresses accessible to the program. Such
access control is enforced before program accesses to cache
are allowed to complete. However, the cache access may be
carried out in parallel with the protection checking, which
removes protection from the program critical path. In some
implementations, a separate virtual address space or
memory access hardware may exist for instructions and data.
In this case, the top level of cache can include distinct PL.Bs
for each access type, an Instruction Protection Lookaside
Buffer (IPLB) and a Data Translation Lookaside Buffer
(DPLB). Other memory hierarchy organizations and access
times can also be used. A memory controller 119 provides an
interface between cache and the external main memory
101A. The memory controller 119 supports virtual memory
with paging where the virtual memory is divided into equal
chunks of consecutive memory locations called pages. Pages
are dynamically mapped to pages of the physical memory
101A through a set of translation tables called page tables.
In order to speed up virtual address translation, the memory
controller 119 stores current address translations in a sepa-
rate cache called the translation lookaside buffer (TLB). As
noted above, for some implementations a separate virtual
address space or memory access hardware may exist for
instructions and data. In this case, the memory controller 119
can include distinct TL.Bs for each access type, an Instruc-
tion Translation Lookaside Buffer (ITLB) and a Data Trans-
lation Lookaside Buffer (DTLB). Note that because the
cache of the memory hierarchy are virtual caches, the
protection function provided by the PLB(s) that are part of
the top level cache is split from the virtual-to-physical
address mapping function provided by the TLB(s) of the
memory controller 119.

The functional units of the execution/retire logic 109
includes at least one load/store unit 401 as shown. Alterna-
tively, the functional units can include one or more dedicated
load units and store units as is well known. Load operations
are decoded by the decode stage 107 and issued for execu-
tion by the load/store unit 401, which issues a load request
corresponding to the decoded load operation to the [.1 Data
Cache 115. The load request includes the virtual address for
the requested cache line. Such virtual address can be pro-
vided directly from the machine code of the load operation.
Alternatively, the virtual address for the load request can be
provided from the operand storage (via the interconnect
network 205) at a reference specified by the machine code
of the load operation. Store operations are decoded by the
decode stage 107 and issued for execution by the load/store
unit 401, which issues a store request corresponding to the
decoded store operation to the 1.1 Data Cache 115. The store
request includes the virtual address for the target cache line.
Such virtual address for the store request can be provided
directly from the machine code of the store operation.
Alternatively, the address for the store request can be
provided from the operand storage (via the interconnect
network 205) at a reference specified by the machine code
of' the store operation. The operand data for the store request
can be provided from the operand storage (via the intercon-
nect network 205) at a reference specified by the machine
code of the store operation.

The execution/retire logic 109 also includes retire stations
403, which are hardware units that are able to buffer the
result data as it arrives from the memory hierarchy. The
number of retire stations 403 can vary. Each retire station
403 is capable of handling one potential in-flight load
operation. A load operation contains arguments that specify
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a virtual memory address and possibly the width and sca-
larity of the desired data. Thus, a load operation may request
to load a byte from virtual address Ox123456789. The load
operation is decoded and issued for execution by the load/
store unit 401. When executing the load operation, the
load/store unit 401 allocates a retire station 403 from the
available pool of retire stations. The load/store unit 401 also
sends the station number of the allocated retire station with
the address and width as part of a load request to the .1 data
cache 115.

The L1 data cache 115 services the load request by
returning all (or part) of the requested data that hits in the L1
data cache 115 to the allocated retire station 403. If the
requested data is not found (misses) in .1 data cache 115,
the missing part(s) of the requested data are requested from
the next level in the memory hierarchy (the L2 cache 117
and then to the memory controller 119 for virtual-to-physical
address translation and access to physical memory) until it
is located and returned to the allocated retire station 403. The
allocated retire station 403 can buffer the requested data, if
need be. The retire station 403 can output the stored
requested data over the interconnect network 205 for storage
in the fast operand storage 203 of the execution/retire logic
109, and then clears its state, and waits to be allocated again
by another load operation.

The virtual cache memory can employ a write-back
scheme where data modifications (e.g., write operations) to
data stored in the L1 data cache 115 are not copied imme-
diately to main memory 101A. Instead, the write to main
memory 10A can be postponed until the cache line is about
to be replaced by new content. The cache memory can also
employ a write-through scheme where data modifications
(e.g., write operations) to data stored in the [.1 data cache
115 are also written in parallel to main memory 101A.

FIG. 5 is a flow chart that illustrates exemplary operations
carried out by the memory controller 119 of FIG. 4 in
processing a load request where the cache memory employs
a write-back scheme. Note that any load request that hits in
cache can be satisfied from cache normally, regardless of
whether the mapping provided by the page table entries of
the system provide an indication that the requested cache
line is “backless” or “backed.” However, any load request
that misses in the cache of the system is issued from the last
level of cache (e.g., the 1.2 cache 117 of FIG. 4) to the
memory controller 119 for processing as described herein.

The operations begin in block 501 where the memory
controller 119 receives a load request issued from the last
level of cache (e.g., the .2 cache 117 of FIG. 4). Thus, in this
case, the load request has missed in the cache of the system.
The load request specifies the virtual address of the
requested cache line.

In block 503, the virtual address of the requested cache
line as specified in the load request received in block 501 is
used to access the TLB and possibly the appropriate page
table maintained by the memory controller 119 in order to
determine if the TLB or the appropriate page table includes
a page table entry for mapping the virtual address of the
requested cache line to a physical address in block 505. If
not, the requested cache line is “backless” and the operations
continue to blocks 507 to 511 and then ends. In this case,
illegal virtual addresses can be recognized by operation of a
protection lookaside buffer (PLB) as described herein. Oth-
erwise, the requested cache line is “backed” and the opera-
tions continue to blocks 513 to 519 and then ends.

Inblock 507, the memory controller 119 generates a cache
line with zero-value bytes throughout.
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In block 509, the memory controller 119 returns one or
more zero-value bytes of the cache line generated in block
507 to the retire station 403 of the processor as result data
for the requested cache line.

In block 511, the memory controller 119 can also possibly
hoist the cache line generated in block 507 to the last level
of cache (e.g., the L2 cache 117 of FIG. 4) and possibly to
higher levels of cache such that it is written to one or more
levels of the cache, if desired.

In block 513, the memory controller 119 utilizes the
physical address of the matching page table entry to read the
requested cache line from main memory (or possibly load it
from non-volatile memory such from on-line mass storage).

In block 515, the memory controller 119 receives the
requested cache line as read from main memory.

In block 517, the memory controller returns one or more
bytes of the cache line as received in block 515 to the
allocated retire station 403 of the processor as result data for
the requested cache line.

In block 519, the memory controller 119 can also possibly
hoist the corresponding cache line (the data values received
in block 515 and the virtual address of the cache line) to the
last level of cache (e.g., the .2 cache 117 of FIG. 4) and
possibly to higher levels of cache such that it is written to
one or more levels of the cache, if desired.

Note that store requests are issued by the load/store unit
401 to the L1 data cache 115, which writes the operand data
as specified in the store request into the target cache line as
appropriate, regardless of whether the mapping provided by
the page table entries of the system provide an indication
that the target cache line is “backless” or “backed.”

Thus, for a load request that misses in cache for a
requested cache line that is “backless,” the memory control-
ler 119 returns a cache line with zero-value data bytes
throughout as a result to the processor. The memory con-
troller 119 can also possibly write a new cache line in the
cache, with the target virtual address and the zero value for
all data bytes of the requested cache line. There is neither
allocation of nor interaction with physical memory.

For a store request that misses in cache for a target cache
line that is “backless” or “backed,” a new cache line can be
written in the cache, with the target virtual address and a
zero value for all data bytes of the cache line. This new cache
line can then be updated with the value of data byte(s)
specified by the store request as if there had been no miss.
There is neither allocation of nor interaction with physical
memory.

FIG. 6 is a flow chart that illustrates exemplary operations
carried out by the memory controller 119 of FIG. 4 in
processing an evicted cache line as part of a lowering
process where the cache memory employs a write-back
scheme. Specifically, when a cache line in the lowest level
of cache (i.e., the shared 1.2 cache 117 in FIG. 4) is evicted
to make room in the cache, the evicted cache line is lowered
to the memory controller 119 for processing as described
below.

In block 601, the operations begin where the memory
controller 119 receives the evicted cache line as part of the
lowering process. The virtual address of the evicted cache
line accompanies (or is associated with) the data of the
evicted cache line in the lowering process.

In block 603, memory controller 119 reconstruct the
virtual address of the evicted cache line to access the TLB
and possibly the page table in order to determine if the TLB
or the appropriate page table includes a page table entry for
mapping the virtual address of the evicted cache line to a
physical address in block 605. If not, the evicted cache line
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is “backless” and the operations continue to blocks 607 to
617 and then ends. Otherwise, the evicted cache line is
“backed” and the operations continue to block 619 and then
ends

In block 607, the memory controller 119 triggers the
allocation of a physical address for a single-line page for
storing the evicted cache line, and creates new page table
entry for this page. It is contemplated that the memory
controller 119 can cooperate with the operating system to
determine the allocation of the physical address for the
single-line page that will store the evicted cache line.

In block 609, the memory controller 119 utilizes the
physical address for the single-line page (corresponding to
the new page table entry created in block 607) to write one
or more bytes of the evicted cache line into main memory
101A.

In block 611, the memory controller 119 triggers alloca-
tion of a physical address for an OS-determined-size page
for storing the evicted cache line, creates a new page table
entry, and clears the page table entry for the single-line page
created in block 607. It is contemplated that the memory
controller 119 can cooperate with the operating system to
determine the page size for the evicted cache line by raising
a predefined interrupt signal. The execution of the operating
system can consult internal data structures to determine what
the evicted line was being used for (such as the stack, heap,
1/0 buffer, etc.) and decide on the page size on that basis for
communication back to the memory controller 119.

In block 613, the memory controller 119 can utilize the
physical address for the single-line page that stores the
evicted cache line to read the evicted cache line from main
memory 101A.

In block 615, the memory controller 119 can receive the
evicted cache line as read from main memory 101A in block
613.

In block 617, the memory controller 119 can utilize the
physical address for the OS-determined-size page (corre-
sponding to the new page table entry created in block 611)
to write one or more data bytes of the evicted cache line into
the main memory 101A.

In block 619, the memory controller 119 can utilize the
physical address of the matching page table entry to write
one or more data bytes of the evicted cache line into the main
memory 101A.

Note that in the operations of blocks 607 to 617, the
single-line page that stores the “backless” newly evicted
cache line is transient in nature and provide a place to put the
evicted cache line while the operating system is setting up a
larger-sized page. Note that the single-line page is similar to
larger-size pages except for its size. It has an entry in the
page tables too, which means that it is backed. When a
larger-sized page has been allocated and initialized, it is
placed in the page table, the cache line in the one-line page
is read in from physical memory and written out to its place
in the new larger-sized page, and the table entry for the
one-line page is cleared so that no virtual address maps to it
any more. That one-line page can then queued for the
hardware for the next time that an eviction of a backless
cache line occurs.

In an alternative embodiment, the cache memory can
employ a write-through scheme where data modifications
(e.g., write operations) to data stored in the [.1 data cache
115 are also written in parallel to main memory 101A. In this
case, the memory controller 119 can operate to process load
requests in the manner described above with respect to FIG.
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5. The write-through caches need not lower evicted cache
lines as the evicted lines are written to main memory when
the cache is written.

FIG. 7 is a flow chart that illustrates exemplary operations
carried out by the memory controller 119 of FIG. 4 in
processing a store request where the cache memory employs
a write-through scheme.

In block 701, the operations begin where the memory
controller 119 receives a store request issued from one level
of the cache. The store request specifies the virtual address
of the target cache line. In the write-through scheme, such
operations are performed in parallel with writing the target
cache line into cache.

In block 703, the virtual address of the target cache line
as specified by the store request received in block 701 is
used to access the TLB and possibly the appropriate page
table maintained by the memory controller 119 in order to
determine if the TLB or the appropriate page table includes
a page table entry for mapping the virtual address of the
target cache line to a physical address in block 705. If not,
the target cache line is “backless” and the operations con-
tinue to blocks 707 to 717 and then ends. Otherwise, the
target cache line is “backed” and the operations continue to
block 719 and then ends.

In block 707, the memory controller 119 triggers the
allocation of a physical address for a single-line page for
storing the target cache line, and creates new page table
entry for this page. It is contemplated that the memory
controller 119 can cooperate with the operating system to
determine the allocation of the physical address for the
single-line page that will store the target cache line.

In block 709, the memory controller 119 utilizes the
physical address for the single-line page (corresponding to
the new page table entry created in block 707) to write one
or more data bytes of the target cache line into the main
memory 101A.

In block 711, the memory controller 119 triggers alloca-
tion of a physical address for an OS-determined-size page
for storing the target cache line, creates a new page table
entry, and clears the page table entry for the single-line page
created in block 707. It is contemplated that the memory
controller 119 can cooperate with the operating system to
determine the page size for the target cache line by raising
a predefined interrupt signal. The execution of the operating
system can consult internal data structures to determine what
the target cache line was being used for (such as the stack,
heap, 1/O buffer, etc.) and decide on the page size on that
basis for communication back to the memory controller 119.

In block 713, the memory controller 119 can utilize the
physical address for the single-line page that stores the target
cache line to read the target cache line from main memory
101A.

In block 715, the memory controller 119 can receive the
target cache line as read from main memory 101A in block
713.

In block 717, the memory controller 119 can utilize the
physical address for the OS-determined-size page (corre-
sponding to the new page table entry created in block 711)
to write one or more data bytes of the target cache line into
the main memory 101A.

In block 719, the memory controller 119 can utilize the
physical address of the matching page table entry to write
one or more data bytes of the target cache line into the main
memory 101A.

Note that in the operations of blocks 707 to 717, the
single-line page that stores the “backless™ target cache line
is transient in nature and provide a place to put the target



US 10,802,987 B2

17

cache line while the operating system is setting up a proper-
sized page. Note that the single-line page is similar to
larger-sized pages except for its size. It has an entry in the
page tables too, which means it is “backed.” When a
larger-sized page has been allocated and initialized it is
placed in the page table, the cache line in the one-line page
is read in from physical memory and written out to its place
in the new larger-sized page, and the table entry for the
one-line page is cleared so no virtual address maps to it any
more. That one-line page can then queued for the hardware
for the next time that a store request to a backless target
cache line occurs.

In another embodiment shown in FIG. 8, the memory
hierarchy of the CPU/Core 102 includes several levels of
cache, such as the L1 instruction cache 113 (not shown) and
the L1 data cache 115 (for example, with an access time of
three machine cycles) and an L2 instruction/data cache 117
(for example, with an access time of 10 machine cycles), as
well as main memory 101A (for example, with an access
time of 400 machine cycles). The caches store tags defined
by physical addresses and thus are physical caches. The top
level of cache (the L1 instruction cache 113 and the L1 data
cache 115) cooperates with a memory management unit
(MMU) 118. A memory controller 119 provides an interface
between the cache memory and the external main memory
101A. The MMU 118 and the memory controller 119
support virtual memory with paging where the virtual
memory is divided into equal chunks of consecutive
memory locations called pages. Pages are dynamically
mapped to pages of the physical memory 101 A through a set
of translation tables called page tables. In order to speed up
virtual address translation, the MMU 118 stores current
address translations in a separate cache called the translation
lookaside buffer (TLB). In some implementations, a separate
virtual address space or memory access hardware may exist
for instructions and data. In this case, distinct MMUS and
distinct TLBs can be provided for each access type, an
instruction memory management unit (IMMU) with an
Instruction Translation Lookaside Buffer ITLB) and a data
memory management unit (DMMU) with a Data Translation
Lookaside Buffer (DTLB). The protection model of the
system can be enforced by the MMU(s). Specifically, the
MMU(s) can provide for access control, restricting the kinds
of'access and the addresses accessible to the program. Such
access control is enforced before program accesses to cache
are allowed to complete. However, the cache access may be
carried out in parallel with the protection checking, which
removes protection from the program critical path. Other
memory hierarchy organizations and access times can also
be used.

The functional units of the execution/retire logic 109
includes at least one load/store unit 401 as shown. Alterna-
tively, the functional units can include one or more dedicated
load units and store units as is well known. Load operations
are decoded by the decode stage 107 and issued for execu-
tion by the load/store unit 401, which issues a load request
corresponding to the decoded load operation for accessing
L1 data cache 115. The load request includes the virtual
address for the requested cache line. Such virtual address
can be provided directly from the machine code of the load
operation. Alternatively, the virtual address for the load
request can be provided from the operand storage (via the
interconnect network 205) at a reference specified by the
machine code of the load operation. The MMU 118 performs
virtual-to-physical address translation with respect to the
requested cache line as part of accessing the L1 data cache
115. Store operations are decoded by the decode stage 107
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and issued for execution by the load/store unit 401, which
issues a store request corresponding to the decoded store
operation for accessing the L1 data cache 115. The store
request includes the virtual address for the target cache line.
Such virtual address for the store request can be provided
directly from the machine code of the store operation.
Alternatively, the address for the store request can be
provided from the operand storage (via the interconnect
network 205) at a reference specified by the machine code
of' the store operation. The operand data for the store request
can be provided from the operand storage (via the intercon-
nect network 205) at a reference specified by the machine
code of the store operation. The MMU 118 performs virtual-
to-physical address translation with respect to the target
cache line as part of accessing the [.1 data cache 115

The execution/retire logic 109 also includes retire stations
403, which are hardware units that are able to buffer the
result data from a respective load operation as it arrives from
the memory hierarchy. The number of retire stations 403 can
vary. Each retire station 403 is capable of handling one
potential in-flight load operation. A load operation contains
arguments that specify a virtual memory address and pos-
sibly the width and scalarity of the desired data. Thus, a load
operation may request to load a byte from virtual address
0x123456789. The load operation is decoded and issued for
execution by the load/store unit 401. When executing the
load operation, the load/store unit 401 allocates a retire
station 403 from the available pool of retire stations. The
load/store unit 401 also sends the station number of the
allocated retire station with the address and width as part of
a load request to the L1 data cache 115.

The L1 data cache 115 services each respective load
request and store request by accessing the TLB and possibly
the appropriate page table of the MMU 118 for virtual-to-
physical address translation where the physical address
derived from such translation is used to access the physical
caches and possibly the physical memory in the event that
the request cache line misses in the physical cache. In
processing a load request, all (or part) of the requested data
that hits in the L1 data cache 115 is returned to the allocated
retire station 403. If the requested data is not found (misses)
in L1 data cache 115, the missing part(s) of the requested
data are requested from the next level in the memory
hierarchy (the L2 cache 117 and then to the memory
controller 119 for access to physical memory) until it is
located and returned to the allocated retire station 403. The
allocated retire station 403 can buffer the requested data, if
need be. The retire station 403 can output the stored
requested data over the interconnect network 205 for storage
in the fast operand storage 203 of the execution/retire logic
109, and then clears its state, and waits to be allocated again
by another load operation.

The physical cache memory can employ a write-back
scheme where data modifications (e.g., write operations) to
data stored in the L1 data cache 115 are not copied imme-
diately to main memory 101A. Instead, the write to main
memory 101A can be postponed until the cache line is about
to be replaced by new content. The cache memory can also
employ a write-through scheme where data modifications
(e.g., write operations) to data stored in the [.1 data cache
115 are also written in parallel to main memory 101A.

FIG. 9 is a flow chart that illustrates exemplary operations
carried out by the MMU 118 and other parts of the memory
hierarchy of FIG. 8 in conjunction with the processing a load
request where the cache memory employs a write-back
scheme.
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The operations begin in block 901 where the MMU 118
receives the virtual address of a requested cache line as
specified by a load request for accessing the [.1 data cache
115.

In block 903, the MMU 118 utilizes the virtual address of
the requested cache line as received in block 901 to access
the TLB and possibly the appropriate page table maintained
by the MMU 118 in order to determine if the TLB or the
appropriate page table includes a page table entry for
mapping the virtual address of the requested cache line to a
physical address in block 905. If not, the requested cache
line is “vacant” and the operations continue to blocks 907 to
913 and then ends. Otherwise, the requested cache line is
“backed” or “pending” and the operations continue to blocks
915 to 919 and then ends.

In block 907, the MMU 118 triggers allocation of a
physical address for a single-line page within a “dummy”
address space that does not correspond to actual address
space of physical memory 101A, creates a page table entry
that associates the virtual address of the target cache line
with the newly allocated physical address for the single-line
page, and marks the new page table entry as “pending.” It is
contemplated that the MMU 118 can cooperate with the
operating system to determine the allocation of the
“dummy” physical address for the single-line page corre-
sponding to the requested cache line.

In block 909, the MMU 118 can generate a cache line with
zero data bytes throughout.

In block 911, the MMU 118 can return the cache line
generated in block 909 to the retire station 403 of the
processor allocated to handle the load request.

In block 913, the MMU 118 can possibly write the new
cache line into the L1 data cache 115. The new cache line
utilizes “dummy” physical address for the single-line page
allocated in block 907 and zero value for all data bytes of the
cache line. The new cache line is also marked as “pending.”

In block 915, the MMU 118 an utilize the physical address
of the matching page table entry to read the requested cache
line from the .1 data cache 115 (or possibly forward the read
request to lower levels of the memory system upon a miss).

In block 917, the data values for the requested cache line
are returned to the retire station 403 of the processor as result
data for the requested cache line.

In block 919, the requested cache line can possibly be
hoisted within the physical such that it is written to one or
more levels of the physical cache, if desired.

FIG. 10 is a flow chart that illustrates exemplary opera-
tions carried out by the MMU 118 and other parts of the
memory hierarchy of FIG. 8 in conjunction with the pro-
cessing a store request where the cache memory employs a
write-back scheme.

The operations begin in block 1001 where the MMU 118
receives the virtual address of a target cache line as specified
by a store request for accessing the [.1 data cache 115. The
store request also specifies one or more data bytes for the
target cache line.

In block 1003, the MMU 118 utilizes the virtual address
of the target cache line as received in block 1001 to access
the TLB and possibly the appropriate page table maintained
by the MMU 118 in order to determine if the TLB or the
appropriate page table includes a page table entry for
mapping the virtual address of the target cache line to a
physical address in block 1005. If not, the target cache line
is “vacant” and the operations continue to blocks 1007 to
1009 and then ends. Otherwise, the target cache line is
“backed” or “pending” and the operations continue to block
1011 and then ends.
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In block 1007, the MMU 118 triggers allocation of a
physical address for a single-line page within a “dummy”
address space that does not correspond to actual address
space of physical memory 101A, creates a page table entry
that associates the virtual address of the target cache line
with the newly allocated physical address for the single-line
page, and marks the new page table entry as “pending.” It is
contemplated that the MMU 118 can cooperate with the
operating system to determine the allocation of the
“dummy” physical address for the single-line page corre-
sponding to the target cache line.

In block 1009, the MMU 118 utilizes the single-line page
physical address allocated in block 1007 to write one or
more data bytes of the target cache line as specified in the
store request into the L1 data cache 115. The cache line is
also marked as “pending.”

In block 1011, the physical cache system can utilize the
physical address of the matching page table entry to write
one or more data bytes of the target cache line as specified
in the store request into the .1 data cache 115.

FIG. 11 is a flow chart that illustrates exemplary opera-
tions carried out by the memory controller 119 of FIG. 8 in
processing an evicted cache line as part of a lowering
process where the cache memory employs a write-back
scheme. Specifically, when a cache line in the lowest level
of cache (i.e., the shared 1.2 cache 117 in FIG. 8) is evicted
to make room in the cache, the evicted cache line is lowered
to the memory controller 119 for processing as described
below.

In block 1101, the operations begin where the memory
controller 119 receives the evicted cache line as part of the
lowering process. The marking of the evicted cache line
(“pending” or “backed”) along with the physical address of
the evicted cache line accompanies (or is associated with)
the data of the evicted cache line in the lowering process.

In block 1103, memory controller 119 checks the marking
of the evicted cache line to determine whether it is marked
as “pending.” If so, the evicted cache line is “pending” and
the operations continue to blocks 1105 to 1115 and then
ends. Otherwise, the evicted cache line is “backed” and the
operations continue to block 1117 and then ends.

In block 1105, the memory controller 119 triggers the
allocation of a physical address for a single-line page for
storing the evicted cache line, creates new page table entry
for this page, and discards the page table entry to the
“dummy” physical address previously associated with
evicted cache line. It is contemplated that the memory
controller 119 can cooperate with the operating system to
determine the allocation of the physical address for the
single-line page corresponding to the evicted cache line.

In block 1107, the memory controller 119 utilizes the
physical address for the single-line page (corresponding to
the new page table entry created in block 1105) to write one
or more bytes of the evicted cache line into the main
memory 101A.

In block 1109, the memory controller 119 triggers allo-
cation of a physical address for an OS-determined-size page
for storing the evicted cache line, creates a new page table
entry, and clears the page table entry for the single-line page
created in block 1105. It is contemplated that the memory
controller 119 can cooperate with the operating system to
determine the page size for the evicted cache line by raising
a predefined interrupt signal. The execution of the operating
system can consult internal data structures to determine what
the evicted line was being used for (such as the stack, heap,
1/0 buffer, etc.) and decide on the page size on that basis for
communication back to the memory controller 119.
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In block 1111, the memory controller 119 can utilize the
physical address for the single-line page that stores the
evicted cache line to read the evicted cache line from main
memory 101A.

In block 1113, the memory controller 119 can receive the
evicted cache line as read from main memory 101A in block
1111.

In block 1115, the memory controller 119 can utilize the
physical address for the OS-determined-size page (corre-
sponding to the new page table entry created in block 1109)
to write one or more bytes of the evicted cache line into the
main memory 101A.

In block 1117, the memory controller 119 can utilize the
physical address of the evicted cache line to write one or
more bytes of the evicted cache line into the main memory
101A.

Note that in the operations of blocks 1105 to 1115, the
eviction of the cache line marked as “pending” causes the
computer processing system to allocate a backed physical
page with suitable mapping to the evicted cache line. The
page table entry corresponding to the “pending” evicted
cache line is then updated such that future references to the
virtual address of the evicted cache line will reach the new
backed address instead of the old “pending” address. In
addition, all cache lines that are located in the pending
region that now has backing can be changed to reflect the
new physical address. There are two ways to effect the
change from pending to physical address for pre-existing
cache lines that become backed. In one, all such pre-existing
cache lines are expelled from cache to the backing memory
at the new physical address. If subsequently brought back to
cache they will have the physical address rather than the
pending address in cache. In another approach, the corre-
sponding “pending” pre-existing cache lines are left with
their “pending” addresses in cache, and the translation
mapping is left referring to the pending address. A new
pending-to-backed mapping is created reflecting the new
allocation. Probes to cache are translated from virtual to
pending addresses, while actual access to physical memory
translate from the pending address to the backing address.
The need for the secondary translation from pending to
backed can be detected by the memory controller because
the pending address, while it lies within the physical address
space, does not correspond to and actual memory location.
The memory controller 119 then translates the unbacked
pending address to the backed address for the actual access
to memory. The pending-to-physical mapping can be kept as
part of the TLB and page table of the system if the pending
address space is numerically disjoint from the virtual
address space, or can be kept in a dedicated side table.

Also note that in the operations of blocks 1105 to 1115, the
single-line physical page that stores the newly evicted cache
line is transient in nature and provide a place to put the
evicted cache line while the operating system is setting up a
larger-sized page. Note that the single-line page is similar to
the larger-sized page in that it is backed. When a larger-sized
page has been allocated and initialized it is placed in the
page table, the cache line in the one-line page is read in from
physical memory and written out to its place in the new
larger-sized page, and the table entry for the one-line page
is cleared so no virtual address maps to it any more. That
one-line page can then queued for the hardware for the next
time that an eviction of a “pending” backless cache line is
processed at the memory controller 119.

In an alternative embodiment, the cache memory can
employ a write-through scheme where data modifications
(e.g., write operations) to data stored in the [.1 data cache
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115 are also written in parallel to main memory 101A. In this
case, the memory controller 119 can operate to process load
requests in the manner described above with respect to FIG.
9. The write-through caches need not lower evicted cache
lines as the evicted lines are written to main memory when
the cache is written.

FIG. 12 is a flow chart that illustrates exemplary opera-
tions carried out by the memory controller 119 of FIG. 8 in
processing a store request where the cache memory employs
a write-through scheme.

The operations begin in block 1201 where the memory
controller 119 receives a store request issued from one level
of the cache. In the write-through scheme, such operations
are performed in parallel with writing the target cache line
into the cache. The marking of the target cache line (“pend-
ing” or “backed”) along with the physical address of the
target cache line accompanies (or is associated with) the data
of the target cache line in the store request.

In block 1203, the memory controller 119 checks the
marking of the target cache line to determine whether it is
marked as “pending.” If so, the target cache line is “pend-
ing” and the operations continue to blocks 1205 to 1215 and
then ends. Otherwise, the target cache line is “backed” and
the operations continue to block 1217 and then ends.

In block 1205, the memory controller 119 triggers the
allocation of a physical address for a single-line page for
storing the target cache line, creates new page table entry for
this page, and discards the page table entry to the “dummy”
physical address previously associated with evicted cache
line. It is contemplated that the memory controller 119 can
cooperate with the operating system to determine the allo-
cation of the physical address for the single-line page
corresponding to the target cache line.

In block 1207, the memory controller 119 utilizes the
physical address for the single-line page (corresponding to
the new page table entry created in block 1205) to write one
or more data bytes of the target cache line into the main
memory 101A.

In block 1209, the memory controller 119 triggers allo-
cation of a physical address for an OS-determined-size page
for storing the target cache line, creates a new page table
entry, and clears the page table entry for the single-line page
created in block 1205. It is contemplated that the memory
controller 119 can cooperate with the operating system to
determine the page size for the target cache line by raising
a predefined interrupt signal. The execution of the operating
system can consult internal data structures to determine what
the target cache line was being used for (such as the stack,
heap, 1/O buffer, etc.) and decide on the page size on that
basis for communication back to the memory controller 119.

In block 1211, the memory controller 119 can utilize the
physical address for the single-line page that stores the target
cache line to read the target cache line from main memory
101A.

In block 1213, the memory controller 119 can receive the
target cache line as read from main memory 101A in block
1211.

In block 1215, the memory controller 119 can utilize the
physical address for the OS-determined-size page (corre-
sponding to the new page table entry created in block 1209)
to write one or more bytes of the target cache line into the
main memory 101A.

In block 1217, the memory controller 119 can utilize the
physical address of the target cache line to write one or more
data bytes of the target cache line into the main memory
101A.
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Note that in the operations of blocks 1205 to 1215, a
write-through store request for a cache line marked as
“pending” causes the computer processing system to allo-
cate a backed physical page with suitable mapping to the
target cache line. The page table entry corresponding to the
“pending” target cache line is then updated such that future
references to the virtual address of the target cache line will
reach the new backed address instead of the old “pending”
address. In addition, all cache lines that are located in the
pending region that now has backing can be changed to
reflect the new physical address. There are two ways to
effect the change from pending to physical address for
pre-existing cache lines that become backed. In one, all such
pre-existing cache lines are expelled from cache to the
backing memory at the new physical address. If subse-
quently brought back to cache they will have the physical
address rather than the pending address in cache. In another
approach, the corresponding “pending” pre-existing cache
lines are left with their “pending” addresses in cache, and the
translation mapping is left referring to the pending address.
A new pending-to-backed mapping is created reflecting the
new allocation. Probes to cache are translated from virtual to
pending addresses, while actual access to physical memory
translate from the pending address to the backing address.
The need for the secondary translation from pending to
backed can be detected by the memory controller because
the pending address, while it lies within the physical address
space, does not correspond to and actual memory location.
The memory controller 119 then translates the unbacked
pending address to the backed address for the actual access
to memory. The pending-to-physical mapping can be kept as
part of the TLB and page table of the system if the pending
address space is numerically disjoint from the virtual
address space, or can be kept in a dedicated side table.

Also note that in the operations of blocks 1205 to 1215,
the single-line physical page that stores the target cache line
is transient in nature and provide a place to put the target
cache line while the operating system is setting up a larger-
sized page. Note that the single-line page is similar to the
larger-size page in that it is backed. When a larger-sized
page has been allocated and initialized it is placed in the
page table, the cache line in the one-line page is read in from
physical memory and written out to its place in the new
larger-sized page, and the table entry for the one-line page
is cleared so no virtual address maps to it any more. That
one-line page can then queued for the hardware for the next
time that a write-through store request for a cache line
marked as “pending” is received at the memory controller
119.

In the embodiments described above, the virtual memory
of the computer processing system can support several
different page sizes, and in particular, pages that are the size
of a single cache line. The operating system can be config-
ured to maintain a pool of unused and uninitialized pre-
allocated single cache line backing pages, and the computer
processing system can include dedicated hardware circuitry
or microcode or other suitable mechanism that is configured
to allocate such pages and update the page table entries of
the system with the allocated address. The eviction of a
vacant cache line causes the computer processing system to
allocate one from the pool of pages, update the page table
entries of the system with the allocated address, and change
the page table entry such that is marked as “backed.”
Eviction can then proceed normally, as if the cache line had
been backed already. The computer processing system can
utilize an interrupt to invoke the operating system to replen-
ish the pool of free pages when needed. A background task
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may allocate and initialize a larger page, consolidate the data
of the one-line pages into the larger page, adjust the page
table entries of the system so that future references to the
virtual addresses will be mapped to the larger page, and then
finally return the one-line pages to the pool. The hardware
may use an interrupt to invoke the operating system to
replenish the pool of free pages as needed.

In an alternate embodiment, the operating system can be
configured to maintain a pool of unused pre-allocated back-
ing pages that are pre-initialized with zero value data bytes
throughout, and the computer processing system can include
dedicated hardware circuitry or microcode or other suitable
mechanism that is configured to allocate such pages and
update page table entries with the allocated address. The
eviction of a vacant cache line causes the computer process-
ing system to allocate one from the pool of pages, update the
page table entry to the allocated physical address, and
change the page table entry such that is marked as “backed.”
Eviction can then proceed normally, as if the cache line had
been backed already. The computer processing system can
use an interrupt to invoke the operating system to replenish
the pool of free pages as needed.

In the embodiments described herein, the computer pro-
cessing system can perform load and store operations with-
out previously allocating and initializing the backing
memory. All backless cache lines resides in cache, and there
is no involvement with the operating system. Furthermore,
if a page is discarded where the cache lines for the page
resides solely in cache, then physical memory is never used.
This can reduce memory traffic between cache and the
physical memory of the computer processing system.

Furthermore, many programs are small enough that they
fit entirely in cache and transient enough that the operating
system constitutes a large fraction of their cost. Conse-
quently, using backless cache lines that are allocated and
initialized without operating system involvement can
improve performance, power usage, etc. In addition, if such
a program is assigned real memory, it is likely that memory
will never be used (because everything fits in cache) so it
was allocated and initialized pointlessly. In this case, using
backless cache lines can lower costs for the program that
uses it, and by reducing pressure on physical memory and
also lowers costs for programs that don’t use backless cache
lines.

There have been described and illustrated herein several
embodiments of a computer processor and corresponding
method of operations. While particular embodiments of the
invention have been described, it is not intended that the
invention be limited thereto, as it is intended that the
invention be as broad in scope as the art will allow and that
the specification be read likewise. For example, the micro-
architecture and memory organization of the CPU 101 as
described herein is for illustrative purposes only. A wide
variety of CPU microarchitectures can embody the improve-
ment and methods described herein, including microarchi-
tectures that employ in-order execution, microarchitectures
that employ out-of-order execution, superscalar microarchi-
tectures, VLIW microarchitectures, single-core microarchi-
tectures, multi-core microarchitectures, and combinations
thereof. In another example, the functionality of the CPU
101 as described herein can be embodied as a processor core
and multiple instances of the processor core can be fabri-
cated as part of a single integrated circuit (possibly along
with other structures). It will therefore be appreciated by
those skilled in the art that yet other modifications could be
made to the provided invention without deviating from its
spirit and scope as claimed.
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What is claimed is:

1. A computer processing system comprising:

a hierarchical memory system having at least one cache
and physical memory, wherein the hierarchical memory
system is organized as virtual memory with a mapping
between virtual addresses and corresponding physical
addresses; and

aprocessor having execution logic that generates memory
requests that are supplied to the hierarchical memory
system, wherein the memory requests include at least
one load memory request supplied to the hierarchical
memory system for reading a cache line stored in the
hierarchal memory system;

wherein, the hierarchical memory system processes the
load memory request by determining whether the load
memory request specifies a virtual address that is not
allocated to valid physical address space of the physical
memory of the hierarchical memory system, generating
a backless cache line with zero-value data bytes
throughout in response to such determining, returning
the backless cache line to the execution logic, and
storing the backless cache line in the at least one cache
where the backless cache line is associated with a
virtual address that lacks allocation to any valid physi-
cal address space of the physical memory of the hier-
archical memory system; and

wherein, when the backless cache line is evicted From
cache of the hierarchical memory system, the hierar-
chical memory system transforms the backless cache
line to a backed state by allocating valid physical
address space of the physical memory of the hierarchi-
cal memory system and associating the allocated valid
physical address space with the virtual address of the
backless cache line.

2. A computer processing system according to claim 1,

wherein:

a plurality of page table entries represents the mapping
between virtual addresses and corresponding physical
addresses of the hierarchical memory system, and the
backless cache line does not correspond to any page
table entry whose physical address points to valid
physical address space of the physical memory of the
hierarchical memory system.

3. A computer processing system according to claim 2,

wherein:

the backless cache line does not have a corresponding
page table entry.

4. A computer processing system according to claim 2,

wherein:

the backless cache line corresponds to a page table entry
whose physical address points outside the valid physi-
cal address space of the physical memory of the hier-
archical memory system.

5. A computer processing system according to claim 1,

wherein:

the transformation of the backless cache line to the backed
state involves allocating physical address space of the
physical memory of the hierarchical memory system
for storing the backless cache line.

6. A computer processing system according to claim 5,

wherein:

the physical address space of the physical memory of the
hierarchical memory system that is allocated to store
the backless cache line comprises a single-cache-line-
sized page in the physical address space of the physical
memory of the hierarchical memory system.
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7. A computer processing system according to claim 6,
wherein:

the backless cache line is stored temporarily in the single-
cache-line-sized page of the physical memory of the
hierarchical memory system and thereafter moved to a
larger-sized page of the physical memory of the hier-
archical memory system.

8. A computer processing system according to claim 6,

wherein:

the larger-size page is specified by execution of an oper-
ating system on the computer processing system.

9. A computer processing system according to claim 1,

wherein:

the cache of the hierarchical memory system comprises at
least one virtual cache.

10. A computer processing system according to claim 1,

wherein:

the cache of the hierarchical memory system comprises at
least one physical cache.

11. A computer processing system according to claim 10,

wherein:

the mapping between virtual addresses and corresponding
physical addresses for the backless cache line includes
a predefined marking that identifies the backless cache
line as being backless.

12. A computer processing system according to claim 11,

wherein:

the transformation of the backless cache line to the backed
state involves allocating valid physical address space of
the physical memory of the hierarchical memory sys-
tem for storing the backless cache line and updating the
marking to reflect the backed state of the cache line.

13. A computer processing system according to claim 11,
wherein:

the backless cache line is transformed to a backed state
when written to the physical memory of the hierarchi-
cal memory system as part of a write-through cache
scheme.

14. A computer processing system according to claim 1,

wherein:

a respective cache line is initially written to cache of the
hierarchical memory system as a backless cache line
until transformed to a backed state.

15. A method of managing virtual memory in a computer
processing system that includes a hierarchical memory sys-
tem having at least one cache and physical memory, the
method comprising:

maintaining a mapping between virtual addresses and
corresponding physical addresses of the hierarchical
memory system,

receiving at least one load memory request supplied to the
hierarchical memory system for reading a cache line
stored in the hierarchal memory system;

processing the load memory request by determining
whether the load memory request specifies a virtual
address that is not allocated to valid physical address
space of the physical memory of the hierarchical
memory system, generating and returning a backless
cache line with zero-value data bytes throughout in
response to such determining, and storing the backless
cache line in the at least one cache where the backless
cache line is associated with a virtual address that lacks
allocation to any valid physical address space of the
physical memory of the hierarchical memory system;
and

in conjunction with evicting the backless cache line from
cache of the hierarchical memory system, transforming
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the backless cache line to a backed state by allocating
valid physical address space of the physical memory of
the hierarchical memory system and associating the
allocated valid physical address space with the virtual
address of the backless cache line.

16. A method according to claim 15, wherein:

a plurality of page table entries represents the mapping
between virtual addresses and corresponding physical
addresses, and the backless cache line does not corre-
spond to any page table entry whose physical address
points to valid physical address space of the physical
memory of the hierarchical memory system.

17. A method according to claim 16, wherein:

the backless cache line does not have a corresponding
page table entry.

18. A method according to claim 16, wherein:

the backless cache line corresponds to a page table entry
whose physical address points outside the valid physi-
cal address space of the physical memory of the hier-
archical memory system.

19. A method according to claim 16, wherein:

the transformation of the backless cache line to the backed
state involves updating the page table entry correspond-
ing to the cache line by replacing a physical address
that points outside the valid physical address space of
the physical memory of the hierarchical memory sys-
tem to a valid physical address within the physical
address space of the physical memory of the hierarchi-
cal memory system.
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20. A method according to claim 15, wherein:

the transformation of the backless cache line to the backed
state involves allocating physical address space of the
physical memory of the hierarchical memory system
for storing the backless cache line.

21. A method according to claim 20, wherein:

the physical address space of the physical memory of the
hierarchical memory system that is allocated to store
the backless cache line comprises a single-cache-line-
sized page in the physical address space of the physical
memory of the hierarchical memory system.

22. A method according to claim 21, further comprising:

temporarily storing the backless cache line in the single-
cache-line-sized page of the physical memory of the
hierarchical memory system and thereafter moving
such cache line to a larger-sized page of the physical
memory of the hierarchical memory system.

23. A method according to claim 22, wherein:

the larger-size page is specified by execution of an oper-
ating system on the computer processing system.

24. A method according to claim 15, wherein:

the cache of the hierarchical memory system comprises at
least one virtual cache.

25. A method according to claim 15, wherein:

the cache of the hierarchical memory system comprises at
least one physical cache.
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