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1
CPU SECURITY MECHANISMS
EMPLOYING THREAD-SPECIFIC
PROTECTION DOMAINS

BACKGROUND OF THE INVENTION
1. Field

The present disclosure relates to computer processing
systems.

2. State of the Art

A computer processor and the program which it executes
needs places to put data for later reference. A computer
processor will typically have many such places, each with its
own trade off of capacity, speed of access, and cost. Usually
these are arranged in a hierarchal manner referred to as the
memory system of the computer processing system, with
small, fast, costly places used for short lived small data and
large, slow and cheap places used for what doesn’t fit in the
small, fast, costly places. The hierarchical memory system
typically includes the following components arranged in
order of decreasing speed of access:

a register file or other form of fast operand storage;

one or more levels of cache memory (one or more levels
of the cache memory can be integrated with the processor
(on-chip cache) or separate from the processor (off-chip
cache);

main memory (or physical memory), which is typically
implemented by DRAM memory and/or NVRAM memory
and/or ROM memory; and

on-line mass storage (typically implemented by one or
more hard disk drives).

In many computer processing systems, the main memory
can take several hundred cycles to access. The cache
memory, which is much smaller and more expensive but
with faster access as compared to the main memory, is used
to keep copies of data that resides in the main memory. If a
reference finds the desired data in the cache (a cache hit) it
can access it in a few cycles instead of several hundred when
it doesn’t (a cache miss). Because a program typically has
nothing else to do while waiting to access data in memory,
using a cache and making sure that desired data is copied
into the cache can provide significant improvements in
performance.

The address space of the program can employ virtual
memory, which provides for two different purposes in mod-
ern processors. One purpose, hereinafter paging, permits the
totality of the address spaces used by all programs to exceed
the capacity of the main memory attached to the processor.
The other purpose, hereinafter address extension, permits
the totality of the address spaces used by all programs to
exceed the address space supported by the processor.

Paging can be used to map the virtual addresses used by
the program at page granularity to physical addresses rec-
ognized by the main memory or to devices such as disk that
are used as paging store. The set of valid virtual addresses
usable without error by a program is called its address space.
The address mapping is represented by a set of mapping
tables maintained by the operating system as it allocates and
de-allocates memory for the various running programs.
Every virtual address must be translated to the correspond-
ing physical address before it may be used to access physical
memory.

Systems with caches differ in whether cache lines store
tags defined by a physical address (physical caching) or a
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virtual address (virtual caching). In the former, virtual
addresses must be translated at least before they are used to
match against the physical addressed tags of the cache; in the
latter, translation occurs after cache access and is avoided if
the reference is satisfied from cache.

Address extension is not needed when the space encom-
passed by the representation of a program address is large
enough. Common representations of program address space
are four bytes (32 bits) and eight bytes (64 bytes). The
four-byte representation (yielding a four gigabyte address
space) is easily exceeded by modern programs, so addresses
(and address spaces) must be reused with different meanings
by different programs and address extension must be used.
Reuse of the same address by different programs is called
aliasing. The computer processing system must disambigu-
ate aliased use of addresses before they are actually used in
the memory hierarchy.

In a computer processing system employing physical
caching, alias disambiguation occurs prior to the caches. In
a computer processing system employing virtual caching,
disambiguation can occur after the caches if the caches are
restricted to hold only memory from a single one of the
aliased addressed spaces. Such a design requires that cache
contents be discarded whenever the address space changes.
However, the total space used by even thousands of very
large programs will not approach the size representable in 64
bits, so aliasing need not occur and address extension is
unnecessary in 64-bit machines. A computer processing
system that does not use address extension permits all
programs to share a single, large address space; such a
design is said to use the single-address-space model.

It happens that the same hardware can be used both to
disambiguate aliases and to map physical memory, and such
is the common arrangement. Because alias disambiguation
is typically performed prior to physical caches, using the
common hardware means that page mapping occurs their
too. When paging and alias disambiguation are in front of
physical caches, it is also common to use the same hardware
for access control, restricting the kinds of access and the
addresses accessible to the program. The hardware enforced
restrictions comprise the protection model of the processor
and memory system. Protection must apply to cache
accesses, so the protection machinery must be ahead of the
caches. Hence it is common to have one set of hardware that
intercepts all accesses to the memory hierarchy and applies
protection restriction, alias disambiguation, and page map-
ping all together. Because all this must be performed for
every reference to memory, and specifically must be per-
formed before cache can be accessed, the necessary hard-
ware is power hungry, large and on the critical path for
program performance.

Furthermore, modern CPU architectures support pro-
tected multiprocessing where different program invocations
are given their own sets of private resources (a process) and
then run in parallel, with a combination of hardware and
software ensuring that no program can inspect or change the
private resources of any other. This protected multiprocess-
ing is often accomplished by letting the CPU execute the
code of one process for a while (with access to the resources
of that process), and then changing the hardware execution
environment to that of another process and running that one
for a while with access to the resources of the second but no
longer with access to the resources of the first. Changing
from running one process to running another is called a
process switch and is very expensive in machine terms
because of the amount of state that has to be saved and
restored as the process context is changed.
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A process can contain multiple threads. A thread is a
sequence of one or more instructions executed by the CPU.
Typically, threads are used for small tasks, whereas pro-
cesses are used for more heavyweight tasks, such as the
execution of applications. Another difference between a
thread and a process is that threads within the same process
share the same address space, whereas different processes do
not. This allows threads to read from and write to the same
data structures and variables, and also facilitates communi-
cation between threads.

Communication between processes (also known as inter-
process communication) can be quite difficult and resource-
intensive. For example, one process may be the source of
some data that it computes or reads from a file, while the
second is a sink for the data which it uses in its own
operation or writes out to a file in turn. In the usual
arrangement, the processes arrange for a buffer to be created
as a shared resource in memory that they both have access
to. The source then fills the buffer with data and triggers a
process switch to the sink. The sink consumes the data, and
then triggers a process switch back to the source for more
data. Each buffer full thus involves two process switches. In
addition, the processes must establish some protocol to
make sure that (for example) the source doesn’t start putting
more data into the buffer before the sink has finished
emptying it of the previous data. Such protocols are difficult
to write and a frequent source of subtle bugs.

Communication between the threads of a process is much
easier. In one method, both source and sink threads can run
concurrently (on separate cores) or semi-concurrently (being
swapped in and out of a single core), and communicate using
shared data structures similar to inter-process communica-
tion. In a second method, only one thread is active at a time
(no matter how many cores are available), and a special
operation or system function permits the running thread to
give up control to an idle thread, possibly passing arguments
to the idle thread. This method is typically referred to as
“coroutines,” and the operation that stops the active thread
and passes control to the idle thread is often called a “visit.”
Processes can also communicate as coroutines.

The difference between process and thread-based com-
munication is that the threads share their whole environ-
ment, while processes don’t, although they may share lim-
ited quantities of state for purposes of the communication.
Thus, current CPU architectures require that the program
code of the cooperating source and sink threads share
resource environments. If the code of the source and sink are
to have private resource sets, they must be organized as
separate processes and utilize the process switch machinery
and a custom protocol.

SUMMARY

This summary is provided to introduce a selection of
concepts that are further described below in the detailed
description. This summary is not intended to identify key or
essential features of the claimed subject matter, nor is it
intended to be used as an aid in limiting the scope of the
claimed subject matter.

Tlustrative embodiments of the present disclosure are
directed to a computer processor including an instruction
processing pipeline that interfaces to a hierarchical memory
system employing an address space. The instruction pro-
cessing pipeline includes execution logic that executes at
least one thread in different protection domains over time,
wherein the different protection domains are defined by
descriptors each including first data specifying a memory
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region of the address space employed by the hierarchical
memory system and second data specifying permissions for
accessing the associated memory region. The address space
can be a virtual address space or a physical address space.
The protection domains can be defined by turfs each repre-
senting a collection of descriptors. A given thread can
execute in a particular protection domain/turf, one protec-
tion domain/turf at a time. The particular protection domain/
turf can be selectively configured to change over time.

In one embodiment, the descriptors of a protection
domain are associated with a key (turf ID) that identifies the
protection domain. The protection domain can be associated
with a key (thread ID) that uniquely identifies the thread that
currently executes in the protection domain. The thread ID
can have a configuration that specifies a wildcard identifier
corresponding to any thread being executed by the execution
logic. The turf ID can have a configuration that specifies a
wildcard identifier corresponding to any turf being executed
by the execution logic.

The descriptors can be stored in at least one hardware
table that is queried in conjunction with servicing requests
that access the hierarchical memory system.

In one embodiment, the hierarchical memory system
includes a top level instruction cache separate from a top
level data cache. The descriptors for memory regions that
store instructions are stored in a first hardware table that is
queried in conjunction with servicing fetch requests that are
issued to the top level instruction cache for accessing
instruction portions stored in the top level instruction cache.
The descriptors for memory regions that store operand data
are stored in a second hardware table that is queried in
conjunction with servicing memory requests that are issued
to the top level data cache for loading operand data from or
storing operand data in the top level data cache. The second
data for descriptors stored in the first hardware table can
selectively specify an execute permission or a portal per-
mission. The second data for descriptors stored in the second
hardware table can selectively specify a write permission or
aread permission. Both tables can selectively specify a grant
permission, which permits transitive re-granting. The first
hardware table can be queried in parallel with querying the
top level instruction cache, and the second hardware table
can be queried in parallel with querying the top level data
cache. These tables are known as the “persistent” tables, as
opposed to the “transient” tables to be described later, and
the permissions they contain are part of the “persistent
permissions”.

In another embodiment, the protection domains can be
further defined by descriptors for predefined memory
regions of the address space that are stored in hardware
registers of the computer processor. The predefined memory
regions can include at least one memory region selected
from the group including: at least one turf-specific memory
region, at least one thread-turf-specific memory region, and
at least one thread-specific memory region. The at least one
turf-specific memory region can include a first memory
region that stores instructions for a particular turf, a second
memory region that stores constants for a particular turf, and
a third memory region that stores data for the particular turf.
The at least one thread-turf-specific memory region can
include a memory region that stores a stack portion for a
particular thread-turf pair (e.g., a stack frame for the stacklet
of the particular thread-turf pair as described herein). The at
least one thread-specific memory region can include a
memory region that stores thread local data for a particular
thread. These hardware descriptors also comprise part of the
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“persistent permissions”. It is possible for permissions in the
hardware descriptors and in the persistent tables to duplicate
or overlap each other.

The hardware registers that store the descriptors for the
predefined memory regions of the address space can be
accessed and processed in order to perform protection
checking before querying the at least one hardware table that
stores the descriptors for protection checking. In certain
circumstances, the protection checking carried out by
accessing and processing the hardware registers that store
the descriptors for the predefined memory regions of the
address space avoids the protection checking carried out by
accessing and processing the at least one hardware table that
stores the descriptors.

The at least one hardware table storing the descriptors can
be backed to one or more Permission Tables stored in the
memory system. The descriptors can be stored as entries in
the hardware table where each entry includes a single bit that
is processed when first adding the corresponding entry to the
at least one hardware table and when evicting the corre-
sponding entry from the at least one hardware table. Such
processing can remove the corresponding entry from the at
least one hardware table without accessing the one or more
Permission Tables for circumstances when the correspond-
ing entry is not located in the one or more Permission Tables.

In still another embodiment, the first data of at least one
descriptor specifies a memory region storing a portal asso-
ciated with a particular function or service. The instruction
processing pipeline can support a portal-type CALL opera-
tion with a pointer argument that refers to the portal. The
actions of the portal-type CALL operation process the portal
to switch to a different protection domain defined by the
portal without switching threads. The portal can include a
turf ID that refers to the different protection domain which
is used during execution of the particular function or service
associated with the portal. The portal can also include
address data that refers to the entry address of the particular
function or service. The portal can also include state infor-
mation that is restored to hardware registers for use during
execution of the particular function or service. The portal
can act as indirect interface mechanism to the execution of
the particular function or service.

In one embodiment, for the at least one descriptor that
specifies a memory region storing the portal, the second data
of such descriptor includes a portal permission. The portal
permission of the second data of such descriptor can be
processed in conjunction with the execution of the portal-
type CALL operation to distinguish the portal-type CALL
operation from a normal-type CALL operation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram of a computer
processing system according to an embodiment of the pres-
ent disclosure.

FIG. 2 is a schematic diagram of exemplary pipeline of
processing stages that can be embodied by the computer
processor of FIG. 1.

FIG. 3 is schematic illustration of components that can be
part of the execution/retire logic of the computer processor
of FIG. 1 according to an embodiment of the present
disclosure.

FIG. 4 is schematic illustration of the instruction-type and
data-type turfs that are used by the computer processor of
FIG. 1 to define and enforce protection domains for threads
executing on the computer processor.
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FIG. 5A is a schematic region of two disjoint memory
regions specified by two instruction-type or data-type turfs.

FIG. 5B is a schematic region of two partially overlapping
memory regions specified by two instruction-type or data-
type turfs.

FIG. 5C is a schematic region of two overlapping memory
regions specified by two instruction-type or data-type turfs.

FIG. 6A is schematic illustration of hardware registers
storing turf-specific descriptors that are used by the com-
puter processor of FIG. 1 to define and enforce protection
domains for threads executing on the computer processor.

FIG. 6B is schematic illustration of hardware registers
storing thread-turf-specific descriptors and thread-specific
descriptors that are used by the computer processor of FIG.
1 to define and enforce protection domains for threads
executing on the computer processor.

FIG. 6C is pictorial illustration of a logical call stack for
a thread executing on the computer processor of FIG. 1.

FIG. 7 is a schematic block diagram of components that
can be part of the execution/retire logic of the computer
processor of FIG. 1 according to an embodiment of the
present disclosure.

FIG. 8A is an illustration of the layout of a portal entry
according to an embodiment of the present disclosure.

FIG. 8B is an illustration of the information contained in
a stacklet info block according to an embodiment of the
present disclosure.

FIGS. 9A and 9B, collectively, is a flowchart illustrating
the operations carried out by the computer processor in
processing CALL operations, which includes normal-type
CALL operations and portal-type CALL operations accord-
ing to an embodiment of the present disclosure.

FIG. 10 is a flowchart illustrating actions carried out by
the computer processor in processing a normal-type CALL
operation.

FIG. 11 is a flowchart illustrating actions carried out by
the computer processor in processing a portal-type CALL
operation.

FIG. 12 is a flowchart illustrating actions carried out by
the computer processor in processing a RETURN operation
from a normal-type CALL operation.

FIG. 13 is a flowchart illustrating actions carried out by
the computer processor in processing a RETURN operation
from a portal-type CALL operation.

FIGS. 14A and 14B, collectively, is a flowchart illustrat-
ing the operations carried out by the computer processor in
processing LOAD and STORE operations according to an
embodiment of the present disclosure.

FIG. 15 is a schematic diagram of the processing of an
ARGS operation and portal-type CALL operation that coop-
erate to pass one or more arguments stored in the stacklet of
a Caller function to a Callee function according to an
embodiment of the present disclosure.

FIG. 16 is a schematic diagram of a spillet and corre-
sponding data stack segment (or stacklet) and call stack
segment.

FIG. 17 is a schematic diagram of a global virtual address
space using an example configuration.

FIG. 18 is a schematic diagram of a call stack on which
a longjmpl operation is executed.

FIG. 19 shows operations that can be performed when a
call address misses in the cWKR but hits in the iPLB or
Permission Tables.

FIG. 20-22 shows operations that can be performed with
respect to memory references based on the TLS base reg-
ister, tpReg.
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DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Tlustrative embodiments of the disclosed subject matter
of the application are described below. In the interest of
clarity, not all features of an actual implementation are
described in this specification. It will of course be appreci-
ated that in the development of any such actual embodiment,
numerous implementation-specific decisions must be made
to achieve the developer’s specific goals, such as compli-
ance with system-related and business-related constraints,
which will vary from one implementation to another. More-
over, it will be appreciated that such a development effort
might be complex and time-consuming but would neverthe-
less be a routine undertaking for those of ordinary skill in the
art having the benefit of this disclosure.

As used herein, the term “operation” is a unit of execu-
tion, such as an individual add, load, store or branch
operation.

The term “instruction” is a unit of logical encoding
including zero or more operations. For the case where an
instruction includes multiple operations, the multiple opera-
tions are semantically performed together.

The term “hierarchical memory system” is a computer
memory system storing instructions and operand data for
access by a processor in executing a program where the
memory is organized in a hierarchical arrangement of levels
of memory with increasing access latency from the top level
of memory closest to the processor to the bottom level of
memory furthest away from the processor.

The term “cache line” or “cache block™ is a unit of
memory that is accessed by a computer processor. The cache
line includes a number of bytes (typically 4 to 128 bytes).

The term “stack” is a region of memory associated with
a thread that implements a function or subroutine. When the
thread of the function or subroutine executes, it may add a
stack frame to the top of the stack by the actions of an
explicit or implicit CALL operation; when the function or
subroutine exits by executing a RETURN operation, the top
stack frame may be removed from the stack.

The term “stacklet” is one segment of a segmented data
stack, and its contents are in general visible to load and store
ops, at least up to the current top of stack. The stacklet stores
stack frames generated by execution of the particular thread
executing in the particular turf.

The term “spillet” is one segment of a segmented call
stack, which contains call linkages, save state, and transient
grant tables. The spillet is generally not visible to load and
store operations but is instead manipulated by hardware or
trusted system code.

The term “stack frame” is a frame of data pushed onto a
stacklet by an executing thread. Each stack frame corre-
sponds to an explicit or implicit CALL operation to a
function or subroutine whose execution as not yet termi-
nated by a corresponding RETURN operation.

In accordance with the present disclosure, a sequence of
instructions is stored in a hierarchical memory system and
processed by a CPU (or Core) 102 as shown in the exem-
plary embodiment of FIG. 1. The CPU (or Core) 102
includes a number of instruction processing stages including
at least one Instruction Fetch Unit (one shown as 103), at
least one Instruction Buffer (one shown as 105), at least one
Decode Stage (one shown as 107) and Execution Logic 109
that are arranged in a pipeline manner as shown. The CPU
(or Core) 102 also includes Prediction Logic 111, at least one
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Program Counter (one shown as 115), at least one L1
Instruction Cache (one shown as 117), and an .1 Data Cache
119.

The L1 Instruction Cache 117 and the L1 Data Cache 119
are logically part of the hierarchical memory system. The
memory system is organized as a single-address-space sys-
tem where all program code and data reside and coexist in
the same global virtual address space. The .1 Instruction
Cache 117 is a cache memory that stores copies of instruc-
tion portions stored in the memory system in order to reduce
the latency (i.e., the average time) for accessing the instruc-
tion portions stored in the memory system. In order to
reduce such latency, the L1 Instruction Cache 117 can take
advantage of two types of memory localities, including
temporal locality (meaning that the same instruction will
often be accessed again soon) and spatial locality (meaning
that the next memory access for instructions is often very
close to the last memory access or recent memory accesses
for instructions). The L1 Instruction Cache 117 can be
organized as a set-associative cache structure, a fully asso-
ciative cache structure, or a direct mapped cache structure as
is well known in the art. Similarly, the [.1 Data Cache 119
is a cache memory that stores copies of operands stored in
the memory system in order to reduce the latency (i.e., the
average time) for accessing the operands stored in the
memory system 101. In order to reduce such latency, the L1
Data Cache 119 can take advantage of two types of memory
localities, including temporal locality (meaning that the
same operand will often be accessed again soon) and spatial
locality (meaning that the next memory access for operands
is often very close to the last memory access or recent
memory accesses for operands). The L1 Data Cache 119 can
be organized as a set-associative cache structure, a fully
associative cache structure, or a direct mapped cache struc-
ture as is well known in the art.

The hierarchical memory system of the CPU/Core 102
can also include an [.2 instruction/data cache 121 as well as
main memory 123 as shown in FIG. 1. The caches 117, 119,
121 store tags defined by virtual addresses and thus are
virtual caches. The protection model of the system can be
enforced by two protection lookaside buffers, one labeled
iPLB that can be viewed as part of the L1 Instruction Cache
117 and one labeled dPLB that can be viewed as part of the
L1 Data Cache 119. Specifically, the protection lookaside
buffer iPLB provides for access control of instructions,
restricting the kinds of access and the addresses for instruc-
tions that are accessible to the program. The protection
lookaside buffer dPLB provides for access control of oper-
and data, restricting the kinds of access and the addresses for
operand data that are accessible to the program. Such access
control is enforced before program accesses to the corre-
sponding cache are allowed to complete. However, the cache
access may be carried out in parallel with the protection
checking, which removes protection from the program criti-
cal path. A memory controller 125 provides an interface
between cache and external main memory 123. The memory
controller 125 supports virtual memory with paging where
the global virtual address space of the memory system is
divided into equal chunks of consecutive memory locations
called pages. Pages are dynamically mapped to pages of the
physical address space of the main memory 123 through a
set of translation tables called page tables. In order to speed
up virtual address translation, the memory controller 123
stores current address translations in a separate cache called
the translation lookaside buffer (TLB). As noted above, a
separate virtual address space or memory access hardware
may exist for instructions and data. In this case, the memory
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controller 123 can include distinct TLBs for each access
type, an Instruction Translation Lookaside Buffer (iTLB)
and a Data Translation Lookaside Buffer (dTLB). Note that
because the cache of the memory hierarchy are virtual
caches, the protection function provided by the PLB(s) that
are part of the top level cache is split from the virtual-to-
physical address mapping function provided by the TLB(s)
of the memory controller 123.

In other implementations, a single virtual address space or
memory access hardware may exist for instructions and data.
In this case, the top level of cache can include a single PLB,
and the memory controller 123 can include a single TLB to
handle both instructions and data. Other memory hierarchy
organizations can also be used.

The Program Counter 115 stores the memory address for
a particular instruction and thus indicates where the instruc-
tion processing stages are in processing the sequence of
instructions. This memory address can be derived from a
predicted (or resolved) target address of a control-flow
operation (branch or call operation), the saved address in the
case of a return operation, or the sum of memory address of
the previous instruction and the length of previous instruc-
tion. The memory address stored in the Program Counter
115 can be logically partitioned into a number of high-order
bits representing a cache line address ($ Cache Line) and a
number of low-order bits representing a byte offset within
the cache line for the instruction.

The Prediction Logic 111 employs a mechanism to predict
the logical chain of instruction portions (e.g., cache lines)
that is to be executed by the CPU 102. The prediction of the
chain of instruction portions can be generated and stored
ahead of the Decode Stage 107. The operation of the
Prediction Logic 111 can be used to control prefetch opera-
tions that prefetch the cache lines that make up the logical
chain of instruction portions. The operation of the Prediction
Logic 111 can be used to control fetch operations carried out
by the Instruction Fetch Unit 103 that fetch such cache lines
from the L1 Instruction Cache 117 into the Instruction Buffer
105. The operation of the Prediction Logic 111 can be used
to control read-out operations that read-out the sequence of
instructions within the logical chain of instruction portions
from the Instruction Buffer 105 to the Decode Stage 107 as
well as to control shifting operations that operate on cache
lines to isolate each instruction for decoding and follow-on
execution. During start-up and mispredict recovery, the
logical chain of instruction portions begins at the target
memory address stored by the Program Counter 115.

The Instruction Fetch Unit 103, when activated, sends a
memory request to the [.1 Instruction Cache 117 to fetch a
cache line from the L1 Instruction Cache 117 at a specified
cache line address ($ Cache Line). This cache line address
can be derived from the operation of the Prediction Logic
111. The L1 Instruction Cache 117 services this request
(possibly accessing lower levels of the hierarchical memory
system if missed in the L1 Instruction Cache 117), and
supplies the requested cache line to the Instruction Fetch
Unit 103. The Instruction Fetch Unit 103 passes the cache
line returned from the L1 Instruction Cache 117 to the
Instruction Buffer 105 for storage therein.

The Decode Stage 107 is configured to decode one or
more instructions stored in the Instruction Buffer 105. Such
decoding generally involves parsing and decoding the bits of
the instruction to determine the type of operation(s) encoded
by the instruction and generate control signals required for
execution of the operation(s) encoded by the instruction by
the Execution/Retire Logic 109.
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The Execution/Retire Logic 109 utilizes the results of the
Decode Stage 107 to execute the operation(s) encoded by
the instructions. The Execution/Retire Logic 109 can send a
load-type memory request to the [.1 Data Cache 119 to load
data from the L1 Data Cache 119 at a specified memory
address. The L1 Data Cache 119 services this load-type
memory request (possibly accessing the lower levels of the
hierarchical memory system if missed in the [.1 Data Cache
119), and supplies the requested data to the Execution/Retire
Logic 109. The Execution/Retire Logic 109 can also send a
store-type memory request to the [.1 Data Cache 119 to store
data into the memory system at a specified address. The .1
Data Cache 119 services this store-type memory request by
storing such data at the specified address (which possibly
involves overwriting data stored by the [.1 Data Cache 119
and lowering the stored data to lower levels of the hierar-
chical memory system).

The instruction processing stages of the CPU (or Core)
102 can achieve high performance by processing each
instruction and its associated operation(s) as a sequence of
stages each being executable in parallel with the other
stages. Such a technique is called “pipelining.” An instruc-
tion and its associated operation(s) can be processed in five
stages, namely, fetch, decode, issue, execute and retire as
shown in FIG. 2.

In the fetch stage, the Instruction Fetch Unit 03 sends a
request to the [.1 Instruction Cache 117 to fetch a cache line
from the L1 Instruction Cache 117 at a specified cache line
address ($ Cache Line). The Instruction Fetch Unit 103
passes the cache line returned from the L1 Instruction Cache
117 to the Instruction Buffer 105 for storage therein.

In the decode stage, one or more instructions stored in the
Instruction Buffer 105 are decoded by the Decode Stage 107.
Such decoding generally involves parsing and decoding the
bits of the instruction to determine the type of operation(s)
encoded by the instruction and generating control signals
required for execution of the operation(s) encoded by the
instruction by the Execution/Retire Logic 109.

In the issue stage, one or more operations as decoded by
the Decode Stage 107 are issued to the Execution/Retire
Logic 109 and begin execution.

In the execute stage, issued operations are executed by the
functional units of the Execution/Retire Logic 109 of the
CPU/Core 102.

In the retire stage, the results of one or more operations
produced by the Execution/Retire Logic 109 are stored by
the CPU/Core 102 as transient result operands for use by one
or more other operations in subsequent issue/execute cycles.

The Execution/Retire Logic 109 includes a number of
functional units (FUs) which perform primitive steps such as
adding two numbers, moving data from the CPU proper to
and from locations outside the CPU such as the memory
hierarchy, and holding operands for later use, all as are well
known in the art. Also within the execution/retire logic 109
is a connection fabric or interconnect network connected to
the FUs so that data produced by a producer (source) FU can
be passed to a consumer (sink) FU for further storage or
operations. The FUs and the interconnect network of the
Execution/Retire logic 109 are controlled by the executing
program to accomplish the program aims.

During the execution of an operation by the Execution/
Retire Logic 109 in the execution stage, the functional units
can access and/or consume transient operands that have been
stored by the retire stage of the CPU/Core 102. Note that
some operations take longer to finish execution than others.
The duration of execution, in machine cycles, is the execu-
tion latency of an operation. Thus, the retire stage of an
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operation can be latency cycles after the issue stage of the
operation. Note that operations that have issued but not yet
completed execution and retired are “in-flight.” Occasion-
ally, the CPU/Core 102 can stall for a few cycles. Nothing
issues or retires during a stall and in-flight operations remain
in-flight.

FIG. 3 is a schematic diagram illustrating the architecture
of an illustrative embodiment of the Execution/Retire logic
109 of the CPU/Core 102 of FIG. 1 according to the present
disclosure, including a number of functional units 201. The
execution/retire logic 109 also includes a set of operand
storage elements 203 that are operably coupled to the
functional units 201 of the execution/retire logic 109 and
configured to store transient operands that are produced and
referenced by the functional units of the execution/retire
logic 109. An interconnect network 205 provides a physical
data path from the operand storage elements 203 to the
functional units that can possibly consume the operand
stored in the operand storage elements. The interconnect
network 205 can also provide the functionality of a bypass
routing circuit (directly from a producer functional unit to a
consumer function unit).

The protection model of the CPU dictates which parts of
the virtual address space of the memory system can and
cannot be accessed by different parts of program code
dynamically as the program code executes on the CPU. The
protection model employs permissions that are tied to virtual
addresses, or rather address ranges. There are no privileged
operation modes or restricted instructions. All access ques-
tions are dealt with via access to virtual addresses. An
address range is just a start address and an end address, and
a permission attached to a range applies to start and end
address and everything in between. As for the permissions
themselves, the protection model of the CPU supports the
classic read and write permissions, as well as the execute
permission that has become more and more prevalent in
mainstream architectures in recent years. There are more
kinds of permissions, of which the portal permission is
particularly important, since it enables the transition
between different protection domains. But there is also a
grant permission, a session permission and possibly more.

The short forms of these permissions are r, W, X, p, g, S.

r or Read permissions are checked on load operations.

w or Write permissions are checked on store operations.

x or Execute permissions are checked on every instruction

load initiated by the CPU, whether from normal
sequential execution or from execution transfer opera-
tions like branch operations, call operations, and return
operations.

p or Portal permissions are checked only on call opera-

tions.

g or Grant permissions are checked on persist operations.

s or Session permissions are checked on session opera-

tions.

Checking permissions in this context means checking
whether the current protection domain has the required
permission flags set for the required address within one of
the ranges in this protection domain. That’s what a protec-
tion domain is in general: a collection of permissions for
different resources. Since all permissions are tied to address
ranges, a protection domain or turf is an identifier with a
collection of address ranges with permissions attached to it.
Permissions are attached to a protection domain (turf) by the
grant operation, which has three basis components:

1. an address range

2. different permission flags

3. the protection domain (turf) this applies to

10

15

20

25

30

35

40

45

50

55

60

65

12

These three components don’t necessarily need to be explic-
itly stored together in one data structure. In different hard-
ware contexts either one or both, the permission flags and
the protection domain, are often implicitly defined by the
memory location or register an address range is stored in.
Also note that some grant operations include additional data
fields as described herein.

The granting and revoking of permissions by program
code segments (threads) can be regulated by the permissions
that the thread already has. For example, if a thread has read
or write permissions to an address range, the thread can pass
on the read or write permissions respectively on this range
to another thread or can choose to pass on the read or write
permission for a part (subrange) on this range. With this
context, an initial all-grant provided by the hardware at
power-up can be broken down hierarchically into ever
smaller grants via delegation. The all-grant is a special
permission setup on boot. It covers the whole address space
and gives read and write permissions to the initial turf. The
grant and session permissions only become applicable when
two threads exist and communicate with each other. The
initial boot code must have execute permissions too, and for
this reason an initial execute grant exists in addition to the
all-grant.

The CPU can support two different kinds of grant opera-
tions, transient grants and persistent grants. Transient grants
are temporary, and are created for the purpose of a single
transaction between two different protection domains,
between two different turfs. Immediately after the transac-
tion for which they were created completes, the transient
permissions are revoked again, automatically, when the
stack frame that they are granted for is exited. Persistent
grants are attached to turfs, and once they are granted they
tend to persist for the remainder of the life time of the turf.
Some tasks, like the unloading of libraries, can of course
remove persistent permissions again, but it is a compara-
tively rare occurrence, and it has to be done explicitly.
Persistent grants can only be created by either directly
accessing the permission data structures in privileged appli-
cations, or by creating them from a transient grant via a
handshake. Transient grants, and only transient grants, can
have the grant permission in addition to other flags. A
grantee of such a transient grant can create persistent per-
missions from the transient permission for its own turf, or on
a subrange or a subset of the rights. The grant right itself of
course cannot be passed on. It is possible without further
restriction to create new transient grants from the persistent
grants that a thread has, or to pass on transient grants to other
threads.

In the single-address-space system of the memory system,
all program code (applications) resides and coexists in the
same global virtual address space. It is still a virtual address
space, in that it maps the all possible addresses used by the
program code to available physical memory. Addresses can
be freely shared between different program code, requiring
no expensive remapping. And while there is still a single
virtual address space to map to physical memory, shared by
all program code, this has no protection domain semantics.
Furthermore, memory address translation (from the virtual
address space to the physical memory address space) is
about resource utilization, and doesn’t need to happen on
every memory access. Specifically, such memory address
translation is only needed when loads miss in cache or cache
lines are evicted and there is actual access to physical
memory. This represents a decoupling of access checks and
memory address translation. Such decoupling allows for the
permissions/turfs as explained above to be applied at byte
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granularity (where the address range(s) of the turfs have byte
granularity), while memory address translation is carried out
at the physical page granularity. Furthermore, the access
checking can be carried out in a far bigger extent than pages,
before any translation takes place.

A turf is uniquely identified by a key, the turfID. In one
embodiment, the size of the turfID can be configurable to be
in the range of 20 to 32 bits. Address range permissions (also
referred to herein as region descriptors and associated per-
missions) are attached to the turfID, and thus it serves to
identify as a protection domain. Note that such a protection
domain provides for protection without isolating applica-
tions into different address spaces. Thus, read only data and
code can be shared between different program code in the
single-address-space system and all program code uses the
same addresses to access them. This is in contrast to multiple
address space systems, where most code and read only data
must go through an expensive relocation step to fit them into
the application address space.

In addition to assigning grants to turfs with the turfID, the
turfID can be used to efficiently perform simple address
mappings to support the copying of address ranges without
invalidating pointers in those address ranges. This is neces-
sary to implement fork( ) in a single address space system.
The single global address space can be accessed as many
different local spaces. To implement this distinction,
addresses can be absolute global addresses where the same
bit pattern always points to the same location in the single
global address space for every turf. Or they can be local
addresses, where the same bit pattern points to the same
relative location within the mapping of a turf. These differ-
ent kinds of addresses form one global and many local
address spaces. These local spaces are not fully fledged
virtual address spaces like in a multiple address space
system. They are rather a simple mapping on top of the
single global virtual address space. All grants are defined in
the global address space, and permissions are checked using
global addresses. The main reason local and global
addresses exist, as mentioned, is to make forking possible,
to easily be able to copy the memory from a local address
space into a different location in the global address space as
a different local space, and still have contained pointers
point to the same relative locations within the new local
space. And as long as the program code only uses local
pointers, this is possible.

Global and local addresses can be distinguished by the
highest order bit 63 (or L bit) in a 64-bit virtual memory
address as shown in Table A below:

TABLE A
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size can be a multiple of the page size. The turflDMask is
obtained by shifting the turfID left to reflect the minimum
plot size. That is, turfIDs can be seen as being indexes into
an array of plots in memory, and the turflDMask is the byte
address of the particular indexed plot. When the highest
order bit is zero, nothing else needs to be done. In this case,
the bit pattern is the global address. When it is one, the
turfIDMask needs to be applied. An example using C
operators follow:

turfID=0%12345678, leftShift=20

turfIDMask=0x12345678<<2011<<63=

0x8001234567800000
globalAddress=0x0123456701234567
localAddress=0x0123456701234567
"0x8001234567800000=0x8122662266A34567
0x8122662266"0x8001234567800000=
0x0123456701234567=global Address
A consequence of this is that local address spaces consist of
power of two-sized plots and the lowest set bit of the turfID
determines the maximum plot size of the local address space
of a turf, i.e. all the bits lower than the lowest set bit of the
mask comprise the offset into the plot segment. The number
of bits in the turfID and the left shift define the minimum and
maximum plot size are a member dependent machine con-
figuration. Note that one distinguished plot, called the home
plot of the turf, has local address zero, and necessarily the
global address equal to the turfIDMask. A turf doesn’t even
have to use any local addresses at all, but as long as a turf
needs to be able to be forked, it will have to.

Note that all addresses in the virtual address space can
point to the same location for all turfs and the local address
space each of them defines. This does not mean a turf gets
to allocate or reserve all of the addresses of the virtual
address space (e.g., 64 ZB of a 60 bit address space). Instead,
the virtual address space must be reserved and allocated
before it can be used. Specifically, the global space and all
local spaces are divided up by the hardware and the OS and
appointed to use for different turfs according to all kinds of
criteria. This is reservation, but reserved address space is
still not accessible by the turf, for that there must exist
permission for them to actually use it. Only with permissions
does the address space become usable for the turf and is
allocated. And even allocated memory doesn’t initially take
any space in the caches or physical memory due to backless
memory mechanisms as described in U.S. patent application
Ser. No. 15/515,058, filed on Oct. 15, 2014, commonly
assigned to the assignee of the present application and herein
incorporated by reference in its entirety.

L Res Address

X XXX

When the L-bit is set, it is a local address and the global
address can be derived by the XOR of the local address and
a base address derived from the turfID, called turfIDMask,
as follows:

Global Address=Local Address XOR turfIDMask
When the L-bit is cleared, it is a global address and the local
address can be derived by the XOR of the global address and
the turfIDMask as follows:

Local Address=Global Address XOR turfIDMask

This arrangement segments to local address spaces in
power of two sized chunks of consecutively addressable
memory. These segments are called plots. The minimum plot
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Due to the way local addresses are constructed from
global addresses, by XORing with a left shifted turfID, local
spaces have several interesting properties as follows:

The turfID bitmask implicitly defines a home plot in the
global address space for every possible turf. This home
plot resides in the global address space where the local
address, consisting of the global address XORed with
turfIDMask, would be zero. One implication of this is:
turfs with smaller maximum plot sizes are more numer-
ous than turfs with larger maximal plot sizes

There is one turf, with a turf ID all zero but the highest ID
bit, which has the largest regular plot size
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there is one turf, with a turf ID of zero, whose plot size is
all of memory and whose home plot is located at global
address zero

turfs with larger home plots overlay spaces that could

have been used for multiple turfs with smaller plot sizes
home plots must reside in a dedicated section the global
address space
The minimum and maximum plot size, and with it the
number of available turfIDs, can be tuned to fit the work
profiles and resource requirements of specific processors,
which results in different bitmask lengths of the turtlD,
which should generally be between 20 and 32 bits.

There can be quite a bit of administrative data associated
with turfs, and the CPU hardware must be able to find this
data quickly without having to consult software. For this
reason, the CPU hardware can maintain a turflet array. The
turflet array can be located at a predefined address in the
global address space. This predefined address can be read
from the turfletsReg special register. The turflets array has as
many entries as there are possible turfIDs, and each entry
has a predefined power of two size. The entries of the turflet
array (turflets) correspond to the different turfs and can
contain pointers to event handlers, permission search trees,
resource limits and other things. Zero can be a meaningful
default for the data contained in the turflet array. In one
embodiment, a turf almost never has read or write access to
its corresponding turtlet or any other turflet corresponding to
other turfs.

A turf is set of address range permissions attached to a
turfID. While turfs isolate the permission sets on memory
regions, threads isolate the control flow of program code
working with those memory regions. In other words, a
thread is a contained flow of execution. A turf can be
associated with a particular thread during execution of the
thread. In this sense, the particular thread executes within
the turf and the address range permissions that belong to the
turf are used during execution of the particular thread to
dictate which parts of the virtual address space of the
memory system can and cannot be accessed by the execution
of the particular thread. Like a turf, each thread is identifi-
able by a unique key referred to as a threadID. Unlike turfs,
there are no additional semantics attached to the threadIDs.
In one embodiment, the size of the threadID can be con-
figurable to be in the range of 20 to 32 bits. The threadID of
the currently executing thread can be kept in threadReg
special register. The turfID of the turf associated with the
currently executing thread can be kept in the turfReg special
register. When the threadReg register is set to X and the
turfReg register is set to Y, it is said that thread X is
(running) in turf Y. When thread X isn’t currently executing,
it is said thread X is parked in turf Y, where turf Y will be
the current turf for thread X if it is reactivated.

In one embodiment, a new thread can be created with a
dedicated spawn operation as follows:

threadID spawn(void* target, args argv)

The target argument is a code address to start execution at.
The args and argv arguments are function arguments as for
any normal function call. The spawn operation returns a
threadID for the newly created thread. The spawn operation
allocates a new hardware threadID and sets up the hardware
data structures to manage the newly created threads, called
a spillet. The new thread is parked in the current turf to
execute at the given target address with the given arguments
in the new thread context later. The arguments are passed
using the same mechanism calls use to pass arguments. It
returns the newly created threadlD. How exactly hardware
threadID generation is implemented can vary. It can be
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incrementing counters with reuse buffers, it can be fully
randomized, it even can be implemented as an abstract
operation, i.e. as a function. Since there are no restricted
operations, runaway thread creation could be a problem.
Fortunately, this can be caught by the memory allocation
interrupts when spillets are evicted from the caches.

For transferring control to a thread without creating a new
one there is the dispatch operation:

void dispatch(threadID next)

The dispatch operation takes one argument, the threadID to
next transfer to. It will park the current thread in the current
turf and transfer control to the next thread, starting it for the
first time or restarting it. In parking the current thread, the
thread context of the current thread can be saved in a special
hardware managed memory region. The data that comprises
a thread context can vary by design. In one embodiment, it
can contain the contents of the operand storage (e.g., belt,
scratchpad), all task saved special registers like the stack
pointer, the code pointers etc. The operation can raise a fault
if the next thread is not parked in the same turf as the current
thread.

The hardware resources used for threads (including spe-
cial memory regions and threadIDs) can be reclaimed by the
following operations:

void suicide(threadID next)

bool fratricide(threadID id)

The suicide operation essentially works like dispatch, but
instead of saving the current thread state, it clears it and
reclaims everything. The fratricide operation only works in
threads currently parked in the same turf. It simply reclaims
all hardware resources allocated for the thread. It will do
nothing and return false if the thread is currently running, as
recognized by the flag set by dispatch.

Note that whenever any of the above operations with a
next ThreadID parameter fault, the fault handler must sched-
ule a new thread. If the application handler does not resolve
the fault, the fault cascades to the system fault handlers,
which ultimately will result in a thread chosen by the
operating system if no earlier fault handler catches it.

The CPU can maintain separate data and call stacks. This
separation makes physically impossible most of the common
stack overflow exploits that are so prevalent on current
hardware, because the call stack, and the return and other
pointers in it are not available to application code. Both data
and call stacks are bound to threads and turfs and are
segmented, so they can grow practically without limit. The
CPU can also employ a dedicated hardware module referred
to as the spiller that operates at the center of stack manage-
ment. The spiller can manage the call stacks directly, from
dedicated memory regions, which are never directly acces-
sible by the application that uses them.

In one embodiment, the spiller employs a dedicated
memory region referred to as the spillet array for managing
the calls stacks. Like the turflets array, the spillet array is an
array in global address space with easily computed entry
addresses. The spillet array is two dimensional and the
dimensions are the threadID and turfID. The entries of the
spillet array, which are referred to herein as spillets, each
have a convenient power of two size, and compared to
turflets is larger (for example, a whole 4 kB page or even
more). A spillet and corresponding data stack segment (or
stacklet) and call stack segment are shown in FIG. 16. The
internal organization of the spillet can be varied by design,
but it contains the stack headers for both the call and data
stacks, handles for transient permissions, and the data to
park and resume threads. It can also contain reserved space
for operating system defined use. The spillet can also store
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the first call stack segment, making it unnecessary to allocate
memory via software for portal call or thread transitions.
This feature can reduce the time for thread and portal call
switches. More call stack segments can be added, each
containing a call stack segment header, like the spillet array
entry itself, but not all the other data. These call stack
segments form a linked ring list with the headers containing
the pointers. The header pointing to the currently in use call
stack segment is always written in the spillet, so the hard-
ware always knows where to find the current call stack top.
Like for the turf headers, a fully zeroed entry is a meaningful
initialization, in this case indicating an unused spillet array
entry. Note that while the space for spillets is reserved in the
address space, there is no associated physical space or
DRAM for unused spillets. Thus only the spillets actually in
use by some thread running in some turf ever occupy
memory. While the amount of the virtual address space
reserved for spillets is large, it is dwarfed by the size of the
overall 60-bit virtual space. The base of the spillet array is
also a predefined address. For example, it can be the same
address from the turfletsReg register where the turflet array
extends downward and the spillet array extends upward.

In contrast to the call stacks, the data stacks often, but not
always, have to be fully accessible to the application turf. At
least the current data stack frame must be accessible to the
running application. The operand storage (e.g., belt and
scratchpad) of the CPU can reduce the need for actual data
stack severely and often it is not needed at all. For this
reason, data stack segments are only allocated when they are
really needed, when the stackf( ) operation is called for the
first time in a thread in a turf. This triggers a stack overtlow
trap, and the handler allocates the data stacks according to
the application needs, with the growth behavior it needs. The
data stack header has a header that holds the administration
data for the data stack such as the stack pointer and frame
pointer into the current segment. The header is stored at a
defined location in the corresponding spillet array entry for
fast access. Additionally, because unlike for the call stack the
segment headers can’t be stored in the segment itself here,
there is a sorted array to the potentially many data stack
segments. These segments are allocated at size alignment,
and don’t need to be all the same size, the stack allocation
handler can implement any sizing strategy.

FIG. 17 shows the global address space using an example
configuration with 24 bit turfIDs, 20 bit threadIDs, 1 MB
minimum plot size, and additionally 4 kB turflet and spillet
size.

Since the control stacks are hidden from application
access and are fully managed by hardware, any control
scheme that is commonly implemented by explicit stack
manipulation can be implemented as machine operations on
the CPU. One such control scheme is the long jump pattern
well known from the C standard library. The operations are:

handle setjmpl( )

op longjmpl(handle target, op value)

These very much resemble the C functions. Handle is an
opaque 8-byte structure that identifies the saved stack and
execution state internally for the spiller. longjmpl has a
return value because it needs to make it available on the belt
for the code to continue. It can of course only be called from
places that are down the call stack from where the setjmpl
has been called, and it will fault if the handle is illegal. It will
also fault if the handle was created in a different turf. The
mechanisms employed to implement these operations can be
the same that are implemented to facilitate normal calls and
returns and dispatch. More specifically, the setjmpl opera-
tion creates exactly the same data structures in the call stack
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in spiller space that the dispatch operation would create, or
a call would create to save the caller frame. It saves the
current frame, creates a new frame by copying the current
one. And then it drops the current frame index of the current
stack as a handle into the new frame and transfers control
there. The spiller also saves the state of the operand storage
(e.g., belt), the instruction pointers and all other call saved
special registers. Note that the turf and thread are implicit
from the spillet address. Each call frame has a very regular
defined layout and size as it is completely hardware man-
aged. The longjmpl operation implements what would be the
second part of the dispatch or the return operation, reinstat-
ing the execution context from the call stack, acting as a kind
of multi-level return. FIG. 18 shows a continuous logical
view, i.e. without taking stack segments into account, of a
call stack on which a longjmpl operation is executed.

A single thread can be active in different turfs, at different
times, depending on the requirements of the application and
the protection requirements of the different components.
Portals allows for threads to cross turf boundaries. Portals
bring threads and turfs together in the conceptual, but also
the very literal way: A portal is a data structure that consists
of:

target memory address to transfer thread control next to

a portal permission on the location the target memory

address is stored in memory, the permission with a

TurfID for the new context of the thread
In memory a portal is just a pointer to an entry point. It can
be a single pointer with a single portal grant on that one
pointer address. It can also be a whole array of entry points
with a portal grant spanning all of it. Such a portal array can
be the definition of the full API of a service library. Such
services, in isolated turfs, potentially with privileges on
important address ranges, but without needing a primary
thread, can be an important security feature. Active appli-
cations with running threads can call into services though
published portals and have tasks performed for them safely
and with minimal overhead. The most prominent example of
a service would be a kernel that implements system calls
through portals.

Portals are invoked with a normal call operation to the
portal’s address and are referred to as portal-type call
operations herein. The portal-type call operation includes
the following steps:

1. The memory access check on the called address reveals

a portal permission.

2. The TurfID is retrieved from the permission and placed

into turfReg.

3. The target memory address is retrieved from the called

location.
4. A memory access check is performed on this target
memory address for x or p

5. If target address has an execute permission, control is
transferred there with the passed arguments (for
example on a new belt) of the new frame.

6. If it has a portal permission again, the steps 2-5 are

repeated, but only once.

Often the caller of the portal doesn’t even need to be
aware it is a portal. It calls the address the portal is stored in
like any other address. Applications control the creation of
portals into their turf, but if everyone could pass through,
there wouldn’t be much safety involved in portals. This is
why the portal permission exists. The addition of step six,
the potential one time repeat of the portal call steps, serves
as a means to allow multiple services to be presented as one
defined API to applications and to possibly swap them out at
runtime even without the applications being aware. The limit
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of one step prevents circular portal structures and a never-
ending attempt by the hardware to find actual code. If a
location with execute permission is not found by the second
iteration, then the caller is faulted with invalid AddressFault.

A transient grant operation is tied to a particular portal-
type call operation. While communicating through a portal-
type call operation is a function call in the hardware imple-
mentation, semantically it is a transaction: a single exchange
of information between two isolated and possibly distrustful
parties. In general, the caller is the client and the callee is the
server, and the set of calls offered by the server to clients is
a service. In an ordinary function call, the caller may pass
arguments to the callee, and the callee may return results, but
in addition caller and callee share much other state: global
data, heap contents, and even data internal to other functions
lower in the stack. Both caller and callee accept this arrange-
ment because they trust each other; the call is a convenient
and clean way to cause an action to be performed, but has
no protection or security aspect.

A portal-type call operation can provide the convenience
of a call-like interchange between client and server, except
that the parties share only the arguments and results of the
call. The arguments and results form the entirety of the
interchange; neither party can see or modify any other state
of the other. This isolation is typical of inter-process com-
munication (IPC) of other systems. IPC does provide isola-
tion, typically using the page mapping hardware for the
purpose, but it usually is large-granularity, inconvenient, and
slow. While conventional IPC is possible on the CPU, the
CPU can provide portal-type call operations as a much
lighter weight alternative. In conventional IPC each party is
a process, a notion that combines a protection domain, some
data reachable from that domain, and one or more threads of
control, all wrapped up together. On the CPU, these notions
are distinct: the protection domain is a turf, which may or
may not have either data or threads associated with it. With
IPC a client thread physically passes argument data (usually
pages) to a server process, where a server thread then uses
the data arguments and the data of its own process to
produce some result, which is then sent back to the client.
Finally, a client thread examines the results and continues
execution. In contrast, on the CPU, when a client thread calls
a portal via a portal-type call operation, the protection
domain that the thread is running in changes from that of the
client turf to that of the server turf. In effect, the former client
thread becomes a server thread, temporarily, and remains
one until it returns from the call. At that point, it doffs the
server disguise, reenters the client turf, and becomes again
a client thread. However, in its brief incarnation as a server
thread, it had full access to the server data and state, because
it was, as a server thread, running in the server turf. In
addition, it had access to the arguments to the call, and was
able to use those arguments and the server state to perform
the service requested by the call. While a server thread, it has
no access to any client state except the arguments. The
temporary server thread will return from the portal-type call
operation after producing the desired results. The return
carries the results back, but no other server state, and the
thread, now properly a client thread, can continue executing
with those results.

A portal-type call operation can carry arguments and
returns results, and in machine terms it uses much the same
calling convention that is used for normal calls. As on many
machines, the CPU can possibly use several different mecha-
nisms for passing arguments and results (such as passing on
operand storage such as the belt, in registers, in memory, and
by reference.
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When passing arguments on the belt or in registers, the
arguments of the portal-type call operation have exactly the
same meaning and use as they have for normal calls. The
belt positions or registers are filled with small operand
values, in belt order. An argument that is too big to fit in the
hardware operands is passed in memory instead. The maxi-
mal size for belt or register arguments can be predefined, but
all widths of single scalars may be passed by the belt or
registers. The belt is of limited fixed size, and the registers
are of limited fixed number, so the call may need to pass
more belt/register arguments than there are places to put
them in; excess arguments are passed in memory instead. By
the nature of the belt and registers, all belt/register argu-
ments (and results) are passed-by-copy. The server receives
the value of the argument; it does not receive any right to
view or modify the source of that value. Similarly, the client
receives the value of the result, not the right to view or
modify the source of that result.

Arguments that are too big or too numerous are passed in
memory, as are variadic arguments (VARARGS or ellipsis
arguments, as defined in various languages). In one embodi-
ment, the CPU can use a common protocol for memory
arguments to both normal and portal-type call operations.
This protocol defines input and output regions of the data
stack, where the caller places the arguments in its output
region, but after the call the callee sees the same arguments
in its input region. The effect of this protocol in a call is that
both callee and caller can see and/or modify a memory
argument independently and concurrently during the call. Of
course, the caller itself is quiescent during the call, but some
other thread in the same turf as the caller and running in a
different can inspect and modify the arguments while the
callee is running in a different core or pre-empted. This
concurrent visibility is harmless when caller and callee are
trusting, as in a normal call. In a portal-type call operation
between a distrustful client and server, the concurrent vis-
ibility is unfortunate and potentially exploitable. To avoid
problems, all arguments passed in memory for any reason
are automatically copied within the server to buffer space
that is not visible to the client, before other access. From the
view of the called function the access to the passed argu-
ments is the same, and a function may transparently be
called either via a portal or via a normal call. However,
because arguments are shared in a normal call but unshared
in a portal-type call operation, it is possible to write client
code that can tell the difference and behaves differently
depending on which was used. Such client code necessarily
involves concurrent access to the stack locations occupied
by the arguments, which is unlikely ever to be needed for
client functionality. If concurrent access to memory argu-
ments is ever in fact necessary, then the call signature of the
function must be changed to make explicit that the relevant
argument is being passed by reference, rather than passed-
by-observable-value.

In one embodiment, the CPU can support two protocols
for pass-by-reference arguments of portal-type call opera-
tions: address-based, and index-based. In the address-based
protocol, the server receives the actual memory addresses of
the arguments, and can use those addresses as ordinary
pointers to access the argument data. Code using the
address-based protocol for pass-by-reference arguments
looks much like code not using a portal, and existing code
can be converted into an address-based server with minimal
rewrite. However, some software and organizations define
their security policy to not only protect the data but also to
hide the actual location of the data in memory. Such a policy
cannot use the address-based protocol, because the address-
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based protocol exposes client addresses to the server.
Instead, the policy must use the index-based protocol. In the
indexed-based protocol, the pass-by-reference arguments
are accessed by getter and setter operations that view the
grants received by a server as a two-dimensional array,
where the first dimension is the ordinal number of the
accessed grant, and the second is a byte index into the data
covered by that grant. Because they differ in the manner of
access, the operations of the address-based protocol differ
from those of the index-based protocol. Any given portal-
type call operation may use either protocol, or even both in
a single call. However, client and server must agree on the
protocol for each argument; a client passing an address-
based argument where the server expects an indexed-based
one will not work, nor vice versa. Thus the choice of
protocol is part of the definition of the API as exported by
the server. Note that these protocols are only relevant when
arguments are passed by reference. A portal-type call opera-
tion that gets all its arguments by value, whether from
operand storage (e.g. the belt) or from memory, can ignore
the distinction.

Arguments passed by reference are not copied, but are
shared between callee/client and caller/server concurrently
throughout the duration of the call. A common idiom is for
the caller to allocate a buffer in memory and pass it to the
callee to be filled with data. In some cases, pass-by-refer-
ence is used only to avoid copy overhead, and the sharing is
incidental. In other cases, the sharing is requisite and both
parties witness the evolution of the argument data concur-
rently and coordinate among themselves the sharing aspects.
Code that cares about the security risks inherent in sharing
between untrusted parties may avoid the sharing inherent in
pass-by-reference arguments by altering the function signa-
ture to use pass-by-value instead. With such a change, the
buffer in the idiom example would be passed using the
in-memory protocol described above, being copied from
caller to callee for use during the call, and copied back to the
caller at return, transparently.

Permission checks are an extremely common occurrence
and they exhibit high locality for caching. Thus, the CPU
can employ three levels at which permissions are checked in
the following order:

1. Well Known Regions (WKR)

2. Protection Lookaside Buffers (PLB)

3. Permission Tables (PT)

For better understanding the description will be in a different
order.

The Permission Tables store permissions that are granted
by executing one of several hardware operations depending
on the permission to be granted and the context of the grant.
The effect of a grant is to record the permission in one of
several data structures in memory, collectively called the
Permission Tables. The Permission Tables can be searchable
by hardware, using search criteria that vary with the type of
grant held by the table. The organization of the Permission
Tables, the search algorithm used and whether access is by
hardware or by trap and software can vary by design. In
general, any code with read/write access to the Permission
Tables is by definition trusted code, and will typically be part
of the operating system kernel or a trusted service affiliated
with the kernel. The Permission Tables can be organized into
two groups, the Persistent Permission Tables and the Tran-
sient Permission Tables. The permissions specified by a
persistent grant operation stays in its Persistent Permission
Table until explicitly removed. The permissions of a tran-
sient grant operation that is associated with a particular
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portal-type call operation are automatically revoked and
removed from its Transient Permission Table when that call
returns.

There can be two Persistent Permission Tables associated
with each turf, one for storing read and write permission and
one for storing execute and portal permissions. This split
into read/write and execute/portal stems from the way the
address ranges are defined and searched for the two catego-
ries, and the different additional data required. The two
Persistent Permission Tables themselves may be located
anywhere, but the addresses of the bases of the tables are
held in the turf header where it is accessible to hardware.
These tables are allocated by the software that creates the
turf. The tables may have pre-allocated space, or be lazily
allocated on overflow, as determined by software policy.
While running in a turf, the base address of the Persistent
Permission Tables of that turf is held in the rwTableReg and
xpTableReg registers.

Read-Write permission ranges in a grant can cover the
whole address space (e.g., 60 bit address space) with byte
granularity, and different ranges can overlap in a protection
domain. For this reason, the Read-Write Persistent Permis-
sion Table can be organized as set of interval trees where the
read-write permissions are stored in and looked up from the
set of interval trees. There are a number of well-known
algorithms for interval trees than can be used. The contents
of a read-write permission of the Read-Write Persistent
Permission Table include:

1. The address range covered

2. The rights conveyed (r or w or both)

3. The grantee, a turf ID

4. The re-grant right (g)

Execute and Portal permission ranges don’t have byte
granularity. The smallest possible portal is a single pointer,
so the granularity is eight bytes at the least. It is not possible
for any pair of entries to cover overlapping ranges. For this
reason, the Execute-Portal Persistent Permission Table may
be organized as a binary tree. The contents of an execute
permission of the Execute-Portal Persistent Permission
Table include:

. The address range covered

. The rights conveyed (x)

. The grantee, a turf ID

. The re-grant right (g)

. The dWKR, discussed later

. The rWKR, discussed later

. The tLibIndex, discussed later

The contents of a portal permission of the Execute-Portal
Persistent Permission Table include: include:

1. The address range covered

2. The rights conveyed (p)

3. The grantee, a turf ID

4. The re-grant right (g)

5. The target turf, a turf ID

The Transient Permission Tables are associated with par-
ticular portal-type call operations, from slightly before the
portal-type call is made until when the portal-type call
returns. Because portal-type call operations may be active in
many threads, and portal-type call operations may nest even
within a single thread, there are many Transient Permission
Tables at any one time, and new ones are continually being
created and destroyed. The organization and structure of a
Transient Permission Table can vary by design. However, a
representative simple organization is for each Transient
Permission Table to be an array of granted permissions
located in the spillet stack of the thread at or near to the
frame holding the state for the corresponding call, and
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discussion herein will assume such an organization. Because
the granted permissions in several different Transient Per-
mission Tables may be applicable simultaneously, all the
Transient Permission Tables for calls by a particular thread
to a service in a particular turf are linked on a list, with the
head of the list held in the spillet header and in the
transTableReg special register of the CPU.

Protection lookaside buffers, or PLBs, are the central
hardware modules around which the CPU permission check-
ing revolves. They are a cache over the various Permission
Tables. Each time a grant is made by executing a hardware
grant operation, the corresponding entry is pushed into the
appropriate PLB as well as being entered in its Permission
Table. The PLBs are pure caches; it is not possible to modify
an entry in a PLB, only to replace it with a different entry.
The eviction policy, structure, and size in number of entries
can vary by design. One example is a fully-associative cache
of some four, eight or sixteen entries. The content of a PLB
entry may differ from the corresponding table entry; in
particular, PLB entries will lack the data supporting the
search structures in memory, such as inter-node tree links.

There are two PLBs: one for the instruction and control
flow, the instruction PLB, or iPLB, and another for loads and
stores, for data access, the dPLB. The PLBs essentially are
small key-value lookup tables. Lookup is by address and ID,
and the keys are the address ranges of the entries and the
protection domain, i.e. either a turfID or a transactionID. All
PLB entries can contain a transience flag t, which is set if the
entry derives from a Transient Permission Table and cleared
if it derives from a persistent table. The interpretation of the
g flag in an entry is influenced by the setting of the t flag,
only when the t flag is set, the g flag is relevant.

The dPLB holds read-write (rw) permissions and is
accessed to check the validity of load and store operations
when the target address is derived from a pointer. It caches
the contents of the read-write Persistent Permission Tables,
and the equivalent entries from the Transient Permission
Tables. Data permission ranges can cover the whole global
address space and be at byte granularity. This means the
range key consists of two 60 bit addresses, and lookup is a
range comparison against the address and an equality com-
parison against the grantee. The contents of a dPLB entry
include:

1. The address range covered

2. The rights conveyed (r or w or both)

3. The grantee, a turf ID

4. The re-grant right (g)

5. The transience flag (t)

The iPLB holds execute-portal (xp) grants and is accessed
to check the validity of control flow transfer operations such
as branch, call, and return operations when the target address
is derived from a pointer. It caches the contents of the
execute-portal Persistent Permission Tables, and the equiva-
lent entries from the Transient Permission Tables. The
contents of an execute iPLB entry include:

1. The address range covered
. The rights conveyed (x)

. The grantee, a turf ID

. The re-grant right (g)

. The dWKR, discussed later

. The rWKR, discussed later

. The tLibIndex, discussed later
. The transience flag (t)

O~ ON bW

9.

The contents of a portal iPLB entry include:
1. The address range covered
2. The rights conveyed (p)
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3. The grantee, a turf ID

4. The re-grant right (g)

5. The target turf, a turf ID

6. The transience flag (t)

The Well Known Regions (called WKRs) are an optimi-
zation. They exist to drastically reduce the need to look up
permissions in the PLBs and the Permission Tables. They
map the most common access patterns in typical software.
Well known Regions are held in special registers and are
checked on certain defined operations before the PL.Bs or
permission tables are consulted. Only when no relevant
WKR check is successful are other permission checks
attempted. WKRs may be thought of as a micro-cache above
the PLBs and the Permission Tables. For most but not all
WKRs there is a normal equivalent permission defined and
resident in the PLBs and protection tables. Associated with
most WKRs is a hardware base register that may be used to
compose addresses in load and store operations. The WKR
is only checked for operations using the corresponding base
register; operations using addresses derived from pointers
bypass the WKRs and are checked in the PLBs and/or
underlying tables. The WKRs can include the code well
know region (cWKR), the data well known region (dAWKR),
the data well known region (rWKR), the thread local storage
region (tWKR), the stack WKR (sWKR), the output WKR
(0WKR), the input Well Known Region (iWKR), the home
WKR (hWKR), and the null Well Know Region (nWKR) as
described below in more detail.

The code well known region, or cWKR, is checked for all
control flow transfer operations using relative addressing,
and also for changes of execute address arising from normal
sequential execution. These transfers are required to stay
within the region covered by cWKR; a relative transfer or
sequential execution to outside that region causes a fault
with invalidAddressFault without consulting the iPLB or the
underlying tables. The cWKR is set whenever an execute
permission entry in the iPLB or its tables has to be consulted
in a pointer-based control flow transfer, i.e. on calls and
branches outside the current cWKR. The address range of
the grant found to cover the target address becomes the new
c¢WKR value after the transfer. Thus the region within which
relative addressing is permitted is changed by jumping/
calling through a pointer pointing into a different region. It
is held in the cWKRReg register. Rather than holding an
address range, if execute grants are constrained to be power-
of-two sized and aligned then the cWKR can be represented
as a bit mask and equality comparand; this optimization
permits the cWKR check to be a simple and cheap bitmask
check instead of the more expensive range comparison.

The data well known region, or dWKR, can be checked
for all load and store operations using addresses based on the
dpReg special register. This register is normally used to
access program static data, such as the contents of the .data
and .bss sections of a load module using ELF conventions.
These addresses are required to stay within the region
covered by dWKR. A load based on dpReg from outside that
region can return a Not-A-Result (NaR) value of the
requested width without consulting the dPLB or the under-
lying tables or actually accessing memory. A store based on
dpReg to outside that region causes a fault with invalidAd-
dressFault without consulting the dPLB or the underlying
tables. dWKR is set whenever an execute permission entry
in the iPLB or its tables has to be consulted in a pointer-
based control flow transfer, i.e. on calls and branches outside
the current cWKR. The value of the dWKR entry in the
permission that permits the control transfer becomes the new
dWKR value after the transfer. Thus the region within which
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program static data is found is changed by jumping/calling
through a pointer pointing into a different code region. The
dWKR is held in the dWKRReg register as a byte range.
Typically, the dpReg base register occupies the same logic as
the lower bound of dWKRReg.

The data well known region, or rWKR, is checked for all
load and store operations using addresses based on the
cppReg special register. This register is normally used to
access program read-only data, such as the contents of the .
rodata sections of a load module using ELF conventions.
These addresses are required to stay within the region
covered by rWKR. A load based on cppReg from outside
that region returns a NaR value of the requested width
without consulting the dPLB or the underlying tables or
actually accessing memory. A store based on cppReg to any
address inside or outside that region causes a fault with
invalidOperationFault without consulting the rWKR, the
dPLB or the underlying tables. rWKR is set whenever an
execute permission entry in the iPLB or its tables has to be
consulted in a pointer-based control flow transfer, i.e. on
calls and branches outside the current cWKR. The value of
the rWKR entry in the permission that permits the control
transfer becomes the new rWKR value after the transfer.
Thus the region within which program read-only data is
found is changed by jumping/calling through a pointer
pointing into a different code region. The rWKR is held in
the rWKRReg register as a byte range. Typically, the cppReg
base register occupies the same logic as the lower bound of
rWKRReg.

The thread local storage region, or tWKR can have byte
granularity that is set when a control flow transfer outside
the range of the current cWKR occurs, it works a little
differently. The code permission contains only an index for
thread local addressing (the tl.ibIndex field), rather than the
full byte address range of the dWKR and rWKR. The tWKR
is held in tWKRReg during execution. While data stacks are
per thread as well, a TLS is of a compile time fixed size and
accessible the same way from all frames within the thread.
The TLS can store global data for the thread. When a thread
enters a code section that requires TLS, as indicated by a
non-zero index, the hardware saves the TLS index in the
tLibIndexReg special register, and clears the tpReg special
register to zero. When subsequently, but before a transfer to
a different cWKR occurs, a load or store using an address
derived from the tpReg base register is executed, the hard-
ware detects that tpReg is NULL and not a meaningful
value. In each spillet is the address of the base and length of
an array of descriptors of thread-local regions, the TLS root
vector. The base and length are clear (zero) for a new turf for
which there are no threads with TLS, where the zero may be
implicit from backless memory. The hardware attempts to
index into the TLS root vector with the TLS index in the
tLibIndexReg, to locate the root of its particular TLS. The
indexed descriptor is loaded to tWKRReg, its range
becomes the new tWKR, tpReg is set to a location within
that range to serve as the address base for further access to
TLS, and the hardware completes the original load or store
normally. If during the above steps it is found that the value
in tLibIndexReg exceeds the length of the TLS root vector
(including the case where there is no TLS root vector at all)
then the hardware traps to software, which allocates a longer
TLS root vector, copies the current root vector contents (if
any) to the new longer one, discards the old vector and
initializes the TLS root vector base and length in the turf
header to describe the new vector. New descriptor entries in
the expanded vector are zero, indicating no allocated TLS
storage. The new length and base replace the old length and
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base in the turf header. The size of the new TLS root vector
may be set from the value of tLibIndexReg, or larger
depending on policy and information available to the trap
handler. If during the above steps it is found that the indexed
descriptor selected by the value of tLiblndexReg is clear
(zero) then the hardware traps to software that allocates a
thread local storage region for the thread/turf combination.
The region is initialized from the TLS prototype that is
associated with the code of the thread, originally from the
load module file that contained that code. How that proto-
type is located, copied to the new region, and initialized is
determined by software policy and the implementation. As
a final step, a read-write grant for the new region and the
owning turf is pushed to the dPLB and the underlying
persistent read-write permission tables, thus permitting
access to the new region both by addresses based in tpReg
(checked by the tWKR) and by pointer (checked by the
dPLB and tables). When the new TLS region is fully
initialized the trap returns and the original load or store
completes normally.

The effect of the above steps is that TLS data is created
lazily on a per-turf-per-thread basis, transparently to the
operations that access it, and the memory steps required to
be able to address it are also only performed the first time an
access is attempted after a transfer to a new cWKR occurred.
Threads never or not currently using TLS see no overhead.

Note that all accesses using addresses based on tpReg are
checked against tWKR (possibly after tWKRReg receives a
value as described above). A failure of the check faults the
thread with invalidAddressFault and neither the dPLB nor
the tables are consulted.

When a call address misses in the cWKR but hits in the
iPLB or Permission Tables then the program will transit to
a different library. The iPLB entry found contains the WKR
values appropriate for the new library. These operations are
shown in FIG. 19. In this graphic, a pass arrow means a
value is copied and changes state elsewhere, a lookup means
a value is searched and used, and an allocate means a new
data structure is allocated.

A memory reference based on the TLS base register,
tpReg, finds the base is zero and traps. It checks for the TLS
vector root in the spillet header and discovers that is empty
too, so it allocates a new vector and updates the root
descriptor in the spillet header. These operations are shown
in FIG. 20.

A memory reference based on the tpReg register finds the
base is zero and traps. It checks for the TLS vector root in
the spillet header and discovers that the entry indexed by
tLibIndexReg is empty, so it allocates a new TLS and
initializes it from the relevant .tdata program segment,
updates the vector entry to describe the new TLS, and sets
tWKR and tpReg to use the new TLS. These operations are
shown in FIG. 21. The TLS root vector entry indexed by
tLibIndexReg now points at the TLS for the current library
and thread. tWKR covers all the new TLS, and tpReg points
at the middle of it so it can be used for based addressing into
the TLS as shown in FIG. 22.

The stack WKR (sWKR) is part of the data stack. It has
byte granularity and describes the space located between the
frame pointer fpReg and the stack pointer spReg of the data
stack. Its primary purpose is sanity checks on stack accesses
to the current frame. It is consulted on any fpReg based load
or store and faults with invalidAddressFault if it fails. Note
that the address range covered by sWKR changes dynami-
cally with every call, return, stackf, or alloca operation
executed. The latency of the changes to sSWKR (i.e. the
relative timing of a change to fpReg or spReg and the change
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in the check on addresses in load and store) can vary by
design. Since stacks usually are allocated in memory that is
accessible by the turf anyway, normal pointers into the stack
still work using permissions in the dPLB and/or tables, but
stacks can be allocated in regions without turf permissions,
and then only the current stack frame can access them.

The output WKR (0WKR), together with the input Well
Known Region (iWKR), forms a mechanism for passing
function arguments on the data stack. It makes use of three
special registers, the addressing base registers inpReg and
outpReg, and the argSizeReg. The oWKR is set with the
argSize operation. Normally, outpReg is equal to the current
spReg, and both register change in sync. With the argSize
operation, spReg is incremented by the requested amount,
but outpReg is not. The freshly created oWKR is defined to
cover the new space on the stack between outpReg and
spReg. The caller can now fill the region between the two
with the argument values, using outpReg as the base for
addressing. Executing the argSize operation with a zero
length recovers the space of the oWKR and invalidates
further access based on outpReg until another argSize opera-
tion is executed. On a call operation, outpReg is copied to
inpReg and argSizeReg is set to spReg-outpReg. A load or
store operation using an address derived from outpReg as a
base is checked against the oWKR. It faults with invalidAd-
dressFault if out of range; neither dPLB nor the tables are
consulted. Since stacks usually are allocated in memory that
is accessible by the turf anyway, normal pointers into the
output region of the stack still work using permissions in the
dPLB and/or tables. A return operation always restores the
state of the caller, i.e. it sets outpReg to inpReg and restores
the previous inpReg, argSizeReg, iWKR, and oWKR, all
having the same values as before the call operation. The
oWKR region may contain stack results from the call
operation, which may be accessed normally using addresses
based on outpReg. Note that if the call operation involved
transit through a portal then the iWKR and oWKR are in
different turfs.

The iWKR is set by each call operation. The caller’s
outpReg becomes the callee’s inpReg, and the caller’s
oWKR becomes the callee’s iWKR. The argSizeReg register
is set to spReg-outpReg of the caller. Note that the argSize
() operation does not set the argSizeReg directly. It only sets
the distance between outpReg and spReg, which will then
become the argSizeReg value on the call operation. The
iWKR is thus defined to start at inpReg and extend argSiz-
eReg upwards on the data stack. The former values are saved
by the spiller for restoration by the return operation. Any
load or store operation using an address derived from the
inpReg base register is checked against iWKR. The check
faults with invalidAddressFault if out of range. Neither the
dPLB nor the tables are consulted. A return operation
restores the state of the caller, i.e. it sets outpReg to inpReg
and restores the previous inpReg, argSizeReg, iWKR, and
oWKR, all having the same values as before the call
operation. Note that if the call operation involved transit
through a portal then the iWKR and oWKR are in different
turfs.

The home WKR (hWKR) serves as an optimization to
avoid searching the dPLB and tables for common accesses
that are not intercepted by the other WKRs. Each turf has its
own hWKR. The location and content of hWKR are arbi-
trary, but performance and power usage are improved if data
frequently accessed by pointers is placed in the region
covered by the hWKR. For implementations supporting the
local vs. global space distinction used for the unix fork( )
syscall, the hWKR by convention can be located at local
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address zero (the home plot) wherever that may be in the
global space. A recommended configuration is for the loader
to lay out all static data of the application and all libraries
within the hWKR, together with space for the initial heap.
The hWKR need not cover the entire plot even if the plot has
been reserved for future use by the turf. Because hWKR
grants read-write permission, any covered address will be a
valid target for pointer-based access. Backless memory will
cause values not otherwise initialized to read as an implicit
zero in the covered region. The hWKR should not be set to
cover addresses for which access is invalid rather than valid
but zero. It can be omitted entirely by setting it to zero. The
hWKRReg register for the hWKR is set on portal-type call
operations during turf transitions. The value for it is obtained
from the turflet. If the region is restricted to power-of-two
size and alignment then it may be implemented as a simple
power of two address mask, with an equally simple check;
the choice of implementation is member specified. The
region covered by the hWKR can only be changed by
changing the value in the corresponding turflet array entry.
The turflet array entry is only writable by trusted software,
s0 an application will normally rely on system software such
as mmap( ) or the loader to manage the hWKR. The hWKR
can be checked whenever a load or store operations use an
operand value (pointer) as its base address. Unlike the other
WKRs, on a failed check there is no fault, but the dPLB and
(and if necessary the underlying tables) can then are
searched for a valid permission.

In speculative code NULL pointer accesses can be quite
frequent. To avoid expensive tree searches every time, the
Null Well Know Region or nWKR can be configured to
quickly can reject NULL pointer accesses. Specifically, the
null pointer can be held in the nWKRReg register as a
bitmask check. This register is permanent and unchangeable.

Note that transient permissions are tied to a single portal-
type call. They are only needed for arguments passed by
reference, and serve to control the sharing of the data
between client and server; transient permissions are not
needed for arguments passed by value, whether on the belt
or in memory. The permissions are created by the client as
a series of one or more grants, which are then made available
to the server by the act of calling through the portal. While
in the call, the server may access the shared memory using
variations of memory-reference operations such as load and
store. These variants specifically indicate that they refer to
shared arguments. When normal memory operations are
used by the server they are always evaluated in the server’s
normal context and do not use any of the permissions
conveyed by the call. The distinction between a reference
using the server’s native permissions, as they exist in the
persistent permission tables, and the permissions conveyed
by the call is maintained in order to avoid the so-called
confused deputy problem, in which a client confuses the
server by supplying a reference that means nothing to the
client but has inherent meaning to the service. Confused
deputy is a frequently used avenue to attack the security of
a system, but is impossible when the permission spaces of
the server and the arguments are disjoint and the server
consistently uses the intended space for access. There can be
two protocols for conveying the permissions required to
access arguments that have been passed by reference. In the
search-based protocol, the server receives real client point-
ers to the argument data, and the data itself may contain
pointers. Thus a pointer-linked list or graph can be passed
intact to a server, and the server can follow the links so long
as all pointers in fact refer to arguments that have been
passed by the client as well.
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Dereferencing a pointer whose target was not part of the
arguments will cause a protection violation, even if the
pointer being dereferenced came from arguments that had
been received from the client. That is, it is not possible to
pass a linked structure solely by passing an entry pointer and
then following the links; each node of the structure must be
individually passed, whereupon the links may be followed
by the server. While the need to pass each node may be
cumbersome, the alternative capabilities approach, in which
having a valid pointer to something implies also having a
pointer to whatever the something points too, is impractical
due to the peculiarities of important programming lan-
guages, and the costs of hardware implementation. How-
ever, the grant-based model of the CPU as described herein
makes it easy to pass only a single node of a linked structure
as an argument, which is difficult in a capability-based
system.

A server may need to make further portal-type call
operations to fulfill its function, and those further nested
servers may need to access data passed by the original client.
Thus it must be possible for a server to pass on, or relay, a
permission it has received to a nested portal-type call
operation. All transient grants may be relayed arbitrarily, in
both protocols, although the operations to perform the relay
differ to conform to the requirements of the respective
protocols. It is possible for permissions received using the
address-based protocol to be relayed using the index-based
protocol. However, the converse is not true; once a permis-
sion is index-based, it remains that way through further
relaying. Allowing indexed-based to address-based relaying
would permit a server to recover the actual addresses used
in an index-based argument, whereas the point of the index-
based protocol is to preclude exposing actual addresses.

Relaying permits a server to pass a received permission
on to a nested portal-type call operations, and so on forming
a relay chain. However, each intermediary in the chain may
make direct use pf the permission received, even if nothing
is required but that it relay the permission on to the final
service that will use the permission to perform its function.
To prevent inspection and use by intermediaries in a relay
chain, a permission may be sealed with the identity of the
intended final consuming server. All transient permissions,
both original and relayed, may be sealed in both protocols,
although the operations to perform the seal differ to conform
to the requirements of the respective protocols. An attempt
to seal a permission that is already sealed will fault with the
invalidOperandFault; it is not possible to change a seal or
remove it. No explicit action is needed to unseal a permis-
sion; the sealee server may simply use the permission as if
it were unsealed.

Note that both protocols support the ability to grant
transient permissions with w (write), r (read) and p (portal)
rights derived from the persistent permissions of the client.
In addition, it is possible to create a transient permission
with p (portal) rights by passing an address of code for
which the client has persistent permission with x (execute)
rights. Such a transient permission is called an implicit
portal, and are intended as a convenience when the inter-
change between client and server may use callbacks. An
implicit portal permission acts exactly a normal portal
permission does, except it describes only a single portal
rather than an array of portals. The target entry address of the
implicit portal is the code address supplied when it was
granted, and the target turf is that of the granting client.
Implicit portals may be sealed, relayed or persisted like any
other transient permission, and supported in both protocols.

10

15

20

25

30

35

40

45

50

55

60

65

30

Transient permissions have strictly limited lifetime; they
are automatically revoked when the associated portal-type
call operation exits for any reason. However, they may be
made persistent by explicitly persisting them, or rather, a
persistent permission conveying the same rights may be
created from them. The transient permission from which a
persistent permission has been created remains for the
duration of the call and may continue to be used as a normal
transient permission. This mechanism provides the means
by which persistent permissions are spread from turf to turf.
The ability to persist a transient permission is governed by
the g (grant) right conveyed by the transient. Only permis-
sions carrying this right may be persisted; an attempted
violation faults with invalidOperandFault. The persistent
permission created may be more restrictive than that of the
transient permission from which it was made; in particular,
it may omit the g right of the transient. The persisting
mechanism permits the transfer of persistent permissions
among cooperating turfs. The server cannot obtain a persis-
tent permission unless the client explicitly passes a transient
permission with the G right, and the client cannot grant-
bomb the server because the server must explicitly persist
any permission received from the client.

Persistent permissions are always address-based because
they expose the actual machine addresses involved. Conse-
quently, only address-based transient permissions may be
persisted; it is not meaningful to persist an index-based
permission because to do so would expose the contained
address. There is no operation to persist an index-based
permission, whether the g right is carried or not. Note that
sealed permissions may be persisted, but only by the sealee
after any relaying through intermediaries. The persist
mechanism requires that the recipient must act as a server
and hence must export a portal that the granter can call with
the permission to be made persistent. This may be incon-
venient; as pure clients would not want the administrative
overhead of exporting a portal vector. As an alternative,
trusted software, such as a loader, may provide initial
persistent permissions directly by manipulating the relevant
persistent permission tables in memory directly. However
direct manipulation is also inconvenient (and potentially
risky) for ordinary extension of persistent permissions, such
as would result from a call to the system mmap( ) function.
The recommended practice for such situations is for the
client (desiring allocation of memory) to call the allocation
server (a well know API exported by a system service),
passing an implicit portal to a client callback function as
well as other necessary arguments. The server then allocates
the resource from state for which it has persistent permis-
sions, and portal-calls back to the client’s implicit portal,
passing a transient permission for the resource that carries g
rights so it may be persisted. The callback then persists the
new permission, thereby giving the client its new persistent
permission, without requiring that the client export portals to
the server. The entire transaction, including the callback
handler, is likely wrapped in a library function of the runtime
system used by the client, and the interface visible to the
client is that of the familiar mmap( ) call.

The implementation of transient permissions can vary by
design. The following describes a representative implemen-
tation for illustration. Other suitable implementations can
also be used. In the representative implementation, the
transient permissions are held in the Transient Permission
Tables, which are hardware-aware data structures in
memory. These tables are searched (address-based protocol)
or indexed (index-based protocol) to locate a relevant per-
mission which allows an attempted access. Because the
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transient permissions are tied to a particular portal-type call
operation and hence to the granting and calling thread, the
corresponding Transient Permission Table is also tied to the
call and thread. Consequently, each Transient Permission
Table is kept in the spiller stack where it is inaccessible
except to trusted system software. There is one Transient
Permission Table per portal-type call operation; if calls are
nested, then there is a Transient Permission Table or each.
Thus the Transient Permission Tables are interleaved with
spiller frames on the spiller stack in the spillet array.

A call operation with granted permissions goes through
three distinct phases. First, a series of grant operations
informs the hardware about each permission to be passed.
Second, the call itself takes place. And third, the executing
server uses the permissions to access argument data that had
been passed by reference. The structures used change as
these steps are passed through.

The first phase comprises accumulating the grants. The
top of the spiller stack is treated as an open-ended array, and
there is a hardware counter, grantTopReg, that indicates the
last filled position in that array. A grant using the index-
based protocol carries the intended index value, which is
used to index this implicit array to select a location in which
the entry describing the granted permission is placed. If the
desired position is beyond the current value of grantTopReg
then the intervening potential positions are cleared such that
the absence of a permission in that position is evident to the
hardware. The grantTopReg is updated to reflect the highest
index position yet used in the series of grants. Because of the
position marking, the grant operation can detect the use of
the same index value in two different grants, which is
faulted. A grant using the address-based protocol is simply
pushed on the top of the spiller stack, advancing grant-
TopReg.

When the granting phase completes and the call is made,
the accumulated permission entries occupy an array on the
spiller stack whose length is given by grantTopReg. This
array is located logically between the spiller frames of the
calling client and the called server. However, client and
server are in different turfs, and so the client frame and the
server frame are based in different spillets and not adjacent
in memory. Thus the new permission array is in the top of
the client spiller frame but not adjacent to the server frame.
The array is internally identified by the memory address of
the adjacent caller frame, which is of fixed length, or
alternatively by the ordinal number of that frame as counted
back through nested calls back to the root of the thread. The
value of grantTopReg (the size of the array) is saved with the
array for index checking, and grantTopReg is cleared in
anticipation of nested portal-type calls. In the index-based
protocol, the constructed array is indexed directly, and the
contained permissions act both as rights-carriers and also as
descriptors for the memory that had been granted. An access
locates the correct array, indexes it to locate the permission/
descriptor, and indexes that with the relevant byte address
and length to obtain a verified effective address which can be
used to access memory normally. Out of range indexes fault,
both for the entry index and the byte index. In the address-
based protocol, a candidate address obtained by the server
for argument data is first checked against the PLB as an
optimization. If the PLB lacks a relevant permission, the
table is located and the entries in the array are searched for
a relevant permission. If none is found then the hardware
indicates a protection violation appropriate to the kind of
access, as described elsewhere. If one is found, then the
permission is pushed to the PLB to speed up further access
using the same permission.
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Because the Transient Permission Table is immediately
above the caller’s spiller frame in the caller’s spillet, when
the portal-type call operation returns, the Transient Permis-
sion Table will be at the top of the spiller stack with no
spiller frames above it. [t may then be cut back automatically
simply by setting grantTopReg to zero.

There are many variations possible in this basic model.
Among others, grants may mark the permission with the
identity of the indicated table and the associated index that
it would have had if it had been written to the table
immediately. The marked permission is then pushed to the
PLB rather than being written it directly to the table. Only
if the permission is evicted from the PLB is it lazily written
back to its position in the table.

In another variation, permissions using the index-based
protocol are pushed into the PLB, either immediately with
lazy writeback to the table, or immediately with immediate
entry to the table, or as loaded from the table when used. The
PLB is searched by address range in the hardware, whereas
index-based lookup is by index. However, the range-check-
ing hardware can be used if the index and table identifier is
treated as a pseudo-address with a length of one byte.

In yet another variation, for permissions using the address
based protocol, the Transient Permission Tables may be
reorganized from the simple array structure described here
into a search tree or other structure for faster lookup. This is
especially advantageous if the permissions are not directly
inserted in the table when granted but are instead pushed into
the PLB, from where they are lazily moved to the table and
inserted in the search structure only if PLB activity forces
them to be evicted before the function exits.

It is also possible to have larger structures holding the
transient grants of many portal-type call operations, similar
to the persistent permission tables. These may include only
the permissions of one thread through nested calls, or may
include permissions from all threads in a turf as the persis-
tent tables do, or even for all threads in a system. Such
organizations are most appropriate when the tables are
maintained by software using trapping, because removing
permissions when a portal-type call operation returns is
likely to be too complex for hardware.

Lastly, the implementations can implement any of the
operations in actual hardware, or by trapping to trusted
software to perform the necessary steps.

Nearly all operations using the address-based protocol
locate a permission by searching in the Transient Permission
Table for one covering a desired address range with the
desired rights. If one is not found in the Transient Permission
Table, then most operations fault with invalidAddressFault.
Exceptions are noted in the relevant operation descriptions
herein.

Nearly all operations using the index-based protocol use
a from argument to select a single permission from the
Transient Permission Table. If this index is out of range then
the operation faults with invalidOperand fault. Most opera-
tions then apply offset and size arguments to the range of
addresses covered by the permission to verify coverage of
the operation. Most operations call for the permission to
possess certain explicit rights. Failure of these checks usu-
ally faults with invalid AddressFault; exceptions are noted in
the description of individual operations.

Permissions in the Transient Permission Table may have
been sealed with the turf ID of a specific grantee, in the
expectation that the permission will be relayed to a server in
that turf through a chain of intermediaries. A sealed permis-
sion for which the current turf is the grantee acts as if it were
unsealed. A sealed permission for which the current turf is
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not the grantee acts as if it had no extent in memory and
carries no rights. These behaviors are the same for all
operations of both protocols except the grantlsSealed opera-
tion.

The CPU can support a number of operations as follows.

The grant operation is a client operation that can use the
address-based protocol or indexed-based protocol for pass-
by-reference arguments as follows:

Address-based:

grant(void* addr, size_t length, bitset<right>rights, tur-
fID seal)

Index-based:

grant(void* addr, size_t length, bitset<right>rights, tur-
fID seal, int t0)

addr—start address of the grant range

length—size of the grant range

rights—the right bits

seal—the turfID of the intended user, others can pass it on,

but not use it

int to—the index for the index based grants
These parameters are used consistently in the following
operations. The rights are represented as a bitmask where
each bit corresponds to one of the defined permissions/rights
enumeration. The grantor must possess persistent permis-
sions covering the range of addresses with at least the
granted rights; failure faults with invalidAddressFault. Mul-
tiple grants may overlap in any way. The created permission
is sealed for use solely by a server running in the seal turf.
A turfID of zero indicates that the permission is unsealed. A
grant with read rights conveys permission to read (load
from) data within the described address range. A grant with
write rights conveys permission to write (store to) data
within the described address range. A grant with portal rights
conveys permission to call through a portal whose target
address is one of the elements of an array of function
pointers located within the described address range. The
target turf of the portal is implicitly the turf of the grantor.
Generally, read, write and portal rights are disjoint in grants,
but this is not required. If the grant is for execution rights,
then an implicit portal is created and the grantee receives the
corresponding p right to that portal. The target code address
of the resulting portal is the address argument and the target
turf'is the turf of the grantor. The length argument is ignored.
There is no way to grant execution rights as such. Any grant
carrying g rights may be persisted by the callee.

The relay operation is a server operation that re-grants all
or part of an existing permission to a further nested call. It
can use an address-based protocol or an index-based proto-
col for pass-by-reference arguments as follows:

Address-based:

relay(void* addr, size_t length, bitset<right>rights, tur-
fID seal)

Index based:

relay(int  from, size_t offset, size_t
bitset<right>rights, turfID seal, int to)
This operation re-grants an existing permission to a further
nested call. The operation differs from the grant operation in
that grant requires that the granter have persistent permis-
sions for the grant, whereas relay requires it to have transient
permissions in the transient table.

The persist operation is a server operation that uses an
address-based protocol for pass-by-reference arguments as
follows:

persist(void* addr, size_t length, bitset<right>rights)
The server must possess a transient permission covering the
indicated range with the indicated rights and also the g right
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whether or not the g right is included in the rights to be
persisted; the operation faults with invalid AddressFault if no
permission exists.

The callAs server operation initiates a portal call to the
code address described by or contained in a portal permis-
sion. The operation carries an argument list; these are belt
arguments identical to those of the call operation. In addi-
tion, arguments may be passed using the normal memory
protocols, including VARARGS. The call executes in the
turf indicated in the portal, rather than in the caller’s turf.

callAs(int from, size_t offset, args argv)

args—the normally encoded function arguments

from—the grant index

offset—the byte offset to the portal to call in the portal

grant
The indexed permission must possess portal rights; failure
faults with invalidAddressFault. An implicit portal has an
offset of zero. Note that the offset is in bytes, not in terms of
function pointers in the portal array, and that the operation
uses an implied width of eight bytes, the size of a function
pointer.

The loadAs operation is a server operation that uses the
index-based protocol for pass-by-reference arguments. It
initiates a load request to fetch data from cache or external
memory to operand storage (e.g., the belt). The data is
loaded from an address contained in an indexed grant as
offset by the argument of the operation. The width loaded
may be any width supported on the member; unsupported
scalar widths will be emulated by specializer-injected idi-
oms, while unsupported vector widths will get a specializer
or conAsm diagnostic. The loadAs operation has the form:

loadAs(int from, size_t offset, widthTag width)

from—the grant index

offset—the byte offset within the region granted

width—the normal width descriptor of load operations
The access is checked both against the transient permissions
of the server executing the operation, and also against the
persistent permissions of the ultimate grantor (disregarding
relays) of the transient permission used to permit the access
in the server. As with all persistent permissions, this second
check is address-based, using the effective address as cal-
culated by the protocol. The double check deals with the
situation in which a granting client may itself have lost rights
to the permission during the course of the call, or may even
have gone away such that the granted resource no longer
exists. The operation is checked against the permission
indexed by from. If the address in the indexed permission is
alocal address it is resolved to a global address using the turf
of the granter of the permission being checked, not that of
the server. The indexed permission must have r rights and
cover the effective address and the indicated width to be
loaded. The original grantor (disregarding relays) of the
applied permission must also possess persistent permission
covering the access. Failure of either check causes the
operation to retire a NaR value of the indicated width in the
same way as for load; it does not fault.

The storeAs operation is a server operation that uses the
index-based protocol for pass-by-reference arguments. It
initiates a store request to store data from the operand
storage (e.g., belt) to cache or external memory. The data is
stored to an address contained in an indexed grant as offset
by the argument of the operation. The datum operand may
be of any width supported by the member; unsupported
scalar widths will be emulated by specializer-injected idi-
oms. The storeAs operation has the form:

storeAs(int to, size_t offset, beltPos datum)

to—the grant index
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offset—the byte offset within the region granted

datum—the belt operand index with the data to store
The access is checked both against the transient permissions
of the server executing the operation, and also against the
persistent permissions of the original grantor (disregarding
relays) of the transient permission used to permit the access.
As with all persistent permissions, this second check is
address-based, using the effective address as calculated by
the protocol. The double check deals with the situation in
which a granting client may itself have lost rights to the
permission during the course of the call, or may even have
gone away such that the granted resource no longer exists.
Failure of the second check, without other error, causes the
store to be silently discarded, as if the operand stored had
been a None. This operation is checked against the permis-
sion indexed by from. If the address within the indexed
permission is a local address it is resolved to a global address
using the turf of the original granter of the permission being
checked, not that of the server. The indexed permission must
have write rights and cover the effective address and the
indicated width to be stored; failure causes a fault with
invalidAddressFault.

The copyFromAs operation is a server operation using the
index-based protocol for pass-by-reference arguments. It
initiates a copy of memory within a granted region to
memory private to the server. The copyFromAs operation
has the form:

copyFromAs(int from, size_t offset, void* to, size_t leng)

from—the grant from which to copy

offset—the byte offset within the region granted

to—the destination buffer address

leng—amount of bytes to copy, doesn’t need to be the

whole grant

The indexed permission must have read rights; failure
causes a fault with invalidAddressFault. Its extent must
cover a portion beginning at offset and extending for leng
bytes; failure causes fault with invalidOperandFault. The
granter of the indexed permission must have a persistent
permission covering the entire extent with r rights; failure
cause fault with invalidAddressFault. The server must have
persistent permission for the entire region described by to
and leng with writw rights; failure causes a fault with
invalidOperandFault. The operation causes a trap to trusted
software, which copies the whole of the extent of the
permission to the space after to.

The copyToAs operation is a server operation that uses the
index-based protocol for pass-by-reference arguments. It
initiates a copy of data from server private memory to a
portion of the memory described by an indexed grant. The
copyToAs operation has the form:

copyToAs(int to, size_t offset, void* from, size_t leng)

to—the grant to copy to

offset—the byte offset within the region granted

from—the source buffer

leng—amount of bytes to copy, must fit in grant
The indexed permission must have writw rights; failure
causes a fault with invalidAddressFault. Its extent must
cover a portion beginning at offset and extending for leng
bytes; failure causes fault with invalidOperandFault. The
original granter (disregarding relays) of the indexed permis-
sion must have a persistent permission covering the selected
portion of the extent with write rights; failure cause fault
with invalidAddressFault. The server must have persistent
permission for the entire region described by from and leng
with read rights; failure causes a fault with invalidOperand-
Fault. The operation causes a trap to trusted software, which
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copies the whole of space described by from and leng to the
selected portion of the extent of the permission.

The grantSize operation is a server operation that uses an
index-based protocol for pass-by-reference arguments as
follows:

grantSize(int index)

This operation provides metadata information about the
permissions in the Transient Permission Table. Specifically,
this operation returns the length, in bytes, of the range
covered by the indexed permission as a result on the belt.

The grantGranter operation is a server operation that
provides metadata information about the permissions in the
Transient Permission Table. One version grantGranter( )
returns the turf ID of the immediate client as a D-width
result on the belt. Another version using an index-based
protocol for pass-by-reference arguments of the form grant-
Granter(int index) returns the turf ID of the granter of the
indexed permission as a D-width result on the belt. The ID
returned may differ from the ID returned by grantGranter( )
due to relaying.

The grantRights operation is a server operation that uses
an index-based protocol for pass-by-reference arguments of
the form grantRights(int index). This operation provides
metadata information about the permissions in the Transient
Permission Table. Specifically, this operation returns a bit-
mask of the enumeration of the rights carried by the indexed
permission as a result on the belt.

The grantlsSealed operation is a server operation that uses
an index-based protocol for pass-by-reference arguments of
the form grantlsSealed(int index). This operation provides
metadata information about the permissions in the transient
permission table. Specially, this operation returns a Boolean
as a result on the belt. The value is true if the indexed
permission is sealed and the current turf is not the grantee.

The CPU can also support a guard operation that supports
a low-overhead pass-by-reference argument for portal-type
calls that can be used to pass linked graph structures to an
untrusting server. The protocol distinguishes memory refer-
ences that are to be evaluated using the permissions of the
server (making the access) from those that are to be evalu-
ated in the permission context of the client who has passed
the data being referenced to the server. The guard operation
sets a reserved bit (referred to as the guard bit) of a pointer
representation. All special registers used as bases, and also
malloc results, have the guard bit cleared. When a client
invokes a portal-type call operation, it can perform transient
grant operations as described herein, and pass pointers into
them normally, still with guard bit cleared. The callee, who
knows his own signature, then sets the guard bit on any
argument pointers it has received, but doesn’t change any of
the data passed by reference via the transient grant operation
such that the pointers embedded in the data structures
remain guardless (guard bit cleared). The semantics of the
guard bit follows:

1.load or store based on a guarded pointer checks only the

transient grants

2. load or store not based on a guarded pointer does not

check transient grants

3. pointer load (loadp) based on a guarded pointer sets

guard on the loaded pointer

4. pointer load (loadp) that loads a guarded pointer faults

5. pointer store (storep) based on a guarded pointer must

be storing a guarded pointer (else fault) and clears the
guard on it

6. load effective address preserves guard
Thus a guarded pointer will use the client’s permissions, and
any pointer loaded from the data will also be a guarded
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pointer and will use the client’s permissions in turn. Mean-
while ordinary non-guarded pointers in the server will
continue to use the server’s permission context and refer-
ence server data.

Clients in general are exposed to confused deputy if a
server modifies a pointer embedded in a granted data struc-
ture. The guard bit is a device to protect trusted servers, not
to protect clients. The effect of all this is that non-defensive
clients and relatively simple servers can use a protocol that
uses ordinary function-call and pointer conventions, with the
proviso that 1) clients must grant the referend of any
pass-by-reference arguments, and 2) servers must explicitly
guard all pointer arguments before use. Arguments and
granted structures can be relay-passed on by nested portal
calls to servers trusted by the intermediate server; relay calls
to untrusted servers are not safe because the calling server
acts like a client in the relay, and clients are not safe in this
protocol.

The CPU can also support sessions that permits both
server and client of a respective portal-type call operation to
maintain session-related state, with automatic cleanup at the
completion of the session. Sessions can support several
transactions that are disjoint in time but otherwise similar.
Sessions make use of the transient permission machinery
and a transient permission table, but the table survives
completion of each portal call and lasts until the session is
explicitly terminated. While not during a portal call, the
transient table sits on the top of the spiller stack, where it
forms a logical array of granted permissions. In ordinary
(non-session) portal-type call operations, this table is cut
back automatically as part of returning from the portal. In a
session the table is not cut back, and can even have more
permissions added to it, so each subsequent portal call
passes the same (or an expanded) permission set to the
server. The accumulated table is discarded when the client
executes the sessionEnd operation, or when the client exits
the frame containing the table for any reason.

The client is always the instigator of a session. There is no
way for the server/service to create a session other than at
the request of a client. Any service that supports a session-
based protocol must export an entrypoint that a client may
call to request the creation of a session. The function may
have any signature or name. In addition to its normal results,
the function is also able to use the sessionMake operation
that gangs with the return to annotate the client’s session
table with server-relevant state. This annotated state includes
a portal pointer called sessionWrap and a data pointer called
sessionState. The sessionState is an implicit argument to
every subsequent client call using the session. Typically, the
server will use the pointer to reach per-client state that lets
it distinguish securely among multiple clients, without need-
ing to maintain complex lookup structures internally. The
sessionWrap must point to a portal whose target turf is the
same server. If the client executes sessionEnd, or exits the
function below the session permission table, then a trap
causes a call to the sessionWrap portal, giving the server a
chance to tear-down its per-session state to the ending
session. When sessionEnd returns the session permission
table is discarded, and client execution resumes as if the call
to sessionEnd had not occurred.

If the client requests a session with the server and the
server is unwilling or unable to do so, then it does not
execute sessionMake and no session is established. How-
ever, the session table remains in place, and the client may
try again. Typically, the client will learn of the lack of
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session via an error indication returned by the portal call,
although it is possible to query if the session had been
established.

It is not possible for a server to session-bomb a client by
using sessionMake with ordinary calls. If the client has not
executed sessionBegin, or if the session is already made,
then sessionMake will fault in the server. The session
operations form a convenient and very lightweight for a
client and server to coordinate shared state over a sequence
of portal calls. However, the facility is also limited: there can
be at most one session active concurrently.

Sessions can involve the follow operations. All session
operations can use both an address-based protocol or index-
based protocol for pass-by-reference arguments.

The sessionBegin operation is a client operation where an
existing Transient Permissions Table on top of the spiller
stack, populated with permissions or empty, is marked as a
candidate session table. The operation faults with invali-
dOperandFault if the table has already been marked.

The sessionlsStarted operation is a client operation that
returns a Boolean result to belt. The value is true if the
Transient Permission Table is marked as being in session.

The sessionMake operation is a server operation of the
form
SessionMake(void(*sessionWrap)( ), void* sessionState)

sessionWrap—the destructor function

sessionState—pointer to server defined data for session
This operation must be attached or ganged with a normal
return operation. It is not possible to execute it as a free-
standing operation. If the return operation is not from a
portal, or if the transient permissions table that supplied
permissions to the returning call is not marked as being a
candidate session or in session, the operation faults with
invalidOperandFault. Otherwise the two arguments are
saved in the Transient Permission Table, and the table state
is marked as being in session. It is permitted to execute
sessionMake while returning from multiple calls during a
session; each execution updates the saved values in the
session table.

The sessionState operation is a server operation that
returns to the belt the current value of the sessionState
pointer that had been saved in the session permission table
when the session was established.

The sessionEnd operation is a client operation that trig-
gers a call to the sessionWrap function that was saved in the
session table. The session table is not cut back during this
call, i.e. the server has transient rights to its contents during
sessionWrap. When sessionWrap returns, the transient table
is cut back as it would have been had it been an ordinary
transient table rather than a session. SessionWrap activation
is also triggered if the client function containing the session
attempts to exit.

As described above, the protection model of the CPU can
employ address ranges (or region descriptors) where each
address range/region descriptor defines a particular address
range within the virtual address space of the memory system
together with meta-data that includes a set of permissions
that grant or deny certain access rights to the particular
address range. The address ranges/region descriptors are
grouped together to form a turf, which is a collection of
address ranges and associated permissions. The address
ranges and permissions that belong to a given turf can be
associated with a particular thread during execution of the
thread. In this sense, the particular thread executes within
the given turf and the set of address ranges and permissions
that belong to the given turf are used during execution of the
particular thread to dictate which parts of the virtual address
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space of the memory system can and cannot be accessed by
the execution of the particular thread. A thread is a contained
flow of execution. Each thread is identifiable by a thread ID.

For an implementation where the memory system is
organized with separate virtual address space for instruc-
tions and data, the turfs are stored as entries in the two PLBs,
where the entries of the iPLB store instruction-type turfs
pertaining to memory regions of the virtual address space
that contain instructions (code), and where the entries of the
dPLB stores data-type turfs pertaining to memory regions of
the virtual address space that contain data. The iPLB can be
organized as a set-associative cache structure, a fully asso-
ciative cache structure, or a direct mapped cache structure as
is well known in the art. Similarly, the dPLB can be
organized as a set-associative cache structure, a fully asso-
ciative cache structure, or a direct mapped cache structure as
is well known in the art.

FIG. 4 illustrates examples of the instruction-type turfs
stored in the entries of the iPLB as well as the data-type turfs
stored in the entries of the dPLB. Each instruction-type turf
includes data that defines a specific memory region with the
virtual address space of the memory system with associated
meta-data including permissions data, a turf ID, and a thread
ID. The data that defines a specific memory region can
specify the lower and upper bounds of the specific memory
region as shown. The permissions data can be used to
specify that certain access rights should be granted or denied
(such as “execute” or “portal” permissions) with regard to
accessing instructions stored the specific memory region.
The turf ID can be used to identify a collection of memory
regions, which includes all memory regions that carry the
same turf ID. The turf ID can possibly represent a wild-card
identifier to specify that the specific memory region corre-
sponds to all turfs. The thread ID can be used to specify that
the instruction-type turf belongs to the particular thread
identified by the thread ID. The thread ID can possibly
represent a wild-card ID to specify that the instruction-type
turf belongs to any thread that executes in the turf identified
by the turf ID of the instruction-type turf. The memory
regions specified by the instruction-type turfs of the iPLB
can be disjoint from one another as shown in FIG. 5A,
partially overlap with one another as shown in FIG. 5B, or
fully overlap with one another as shown in FIG. 5C. Thus,
the instruction-type turfs specified by the iPLB can describe
overlapping memory regions, possibly with different per-
missions (and thus different access rights). The same
memory region can have several instruction-type turfs with
different turf IDs and thus can belong to multiple turfs.

Each data-type turf includes data that defines a specific
memory region with the virtual address space of the memory
system with associated meta-data including permissions
data, a turf ID, and a thread ID. The data that defines a
specific memory region can specify the lower and upper
bounds of the specific memory region as shown. The per-
missions data can be used to specify that certain access
rights should be granted or denied (such as read or write
permissions) with regard to accessing data stored the spe-
cific memory region. The turf ID can be used to identify a
collection of memory regions, which includes all memory
regions that carry the same turf ID. The turf ID can possibly
represent a wild-card identifier to specify that the specific
memory region corresponds to all turfs. The thread ID can
be used to specify that the data-type turf belongs to the
particular thread identified by the thread ID. The thread 1D
can possibly represent a wild-card ID to specify that the
data-type turf belongs to any thread that executes in the turf
identified by the turf ID of the data-type turf. The memory
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regions specified by the data-type turfs of the dPLB can be
disjoint from one another as shown in FIG. 5A, partially
over overlap with one another as shown in FIG. 5B, or fully
overlap with one another as shown in FIG. 5C. Thus, the
data-type turfs specified by the dPLB can describe overlap-
ping memory regions, possibly with different permissions
(and thus different access rights). The same memory region
can have several data-type turfs with different turf IDs and
thus can belong to multiple turfs.

The entries (and corresponding instruction-type turfs) of
the iPLB can be accessed in conjunction with a fetch request
issued to the L1 Instruction Cache 117 (which can stem from
the instruction stream flow or control transfer, including
conditional or unconditional BRANCH or CALL or
RETURN operations) to ensure that the executing thread
whose actions issued the fetch request has requisite permis-
sion to access the instruction stored at the requested memory
address (which can be a cache line address holding one or
more instructions). In this manner, the virtual address space
for instructions is protected, independent of the translation
to physical addresses. The cache line addresses specified in
the fetch requests employ virtual addresses as does the tags
of the L1 Instruction Cache 117 and the instruction-type
turfs of the iPLB. In one embodiment, the access and lookup
of'the iPLB can be performed in parallel with the access and
lookup of the L1 Instruction Cache 117.

The entries (and corresponding data-type turfs) of the
dPLB can be accessed by a memory request issued to L1
Data Cache 119 to ensure that the executing thread whose
actions issued the memory request has requisite permission
to access the operand data stored at the requested memory
address (which can be a cache line address holding one or
more bytes of operand data). In this manner, the virtual
address space for data is protected, independent of the
translation to physical addresses. The memory addresses
specified in the memory request employs virtual addresses
as does the tags of the L1 Data Cache 119 and the data-type
turfs of the dPLB. In one embodiment, the access and lookup
of'the dPLB can be performed in parallel with the access and
lookup of the L1 Data Cache 119.

Note that the iPLB and dPLB are of limited size and can
run out of space. To address this issue, the turfs of both the
iPLB and dPLB are backed by memory in structures called
the Permissions Tables as described herein. The Permission
Tables are set up by the operating system. The Permissions
Tables memory structure can be accessed in the event that a
lookup of the iPLB or dPLB misses. In this case, the CPU
hardware searches the appropriate Permission Table(s) for
matching turfs which can then be hoisted up into the iPLB
or dPLB for subsequent access.

In the protection model of the CPU, a thread executes in
a turf—one turf at a time, but this turf can change over time.
The CPU hardware includes two special purpose hardware
registers (which is referred to herein as “specReg”) that hold
both the thread ID and turf ID for each thread that is
currently executing on the CPU. Note that more than one
thread can execute concurrently on the CPU for the case
where the CPU includes multiple cores. Each one of these
threads corresponds to a unique thread and turf combination,
which can be identified by the unique thread ID—turf ID
pair corresponding to the thread ID of a particular thread and
the turf ID for the particular turf that the particular thread is
currently executing in. For each one of these thread-turf
combinations, the CPU hardware can utilize the instruction-
type and data-type turfs that hold a thread ID and turf ID that
match the thread ID and turf ID stored in SpecReg register
(as well as the instruction-type and data-type turfs that hold
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a wildcard ID for turf and a thread ID that matches the thread
1D stored in SpecReg for the given thread and the instruc-
tion-type and data-type turfs that hold a wildcard ID for
thread and a turf ID that matches the turf ID stored in
SpecReg for the given thread) to dictate the security per-
missions associated with the memory regions of the turf of
the given thread. Note that more than one thread can execute
in the same turf concurrently, and thus multiple threads can
see and use the memory regions of the same turf concur-
rently according to the permissions associated with the
memory regions of that turf.

Note that the hardware-based PLB processing consumes
computational resources and power that ideally would be
avoided. And the vast majority of memory accesses for each
program are directed to the certain pre-defined well known
regions as described herein. For this reason, each executing
thread can have access to a set of well-known turf-specific
hardware registers for the turf ID that it is executing in. Such
turf-specific hardware registers store state information for
the given turf. Such turf-specific state information can
include a set of addresses and corresponding descriptors
(referred to herein as “well-known region descriptors™) that
pertain to different regions of the virtual address space that
are commonly accessed by a thread executing in the given
turf. The addresses define base addresses that are used to
derive effective addresses into the turf-specific regions. The
descriptors define address ranges for the turf-specific regions
with implicit permissions for such turf-specific regions. An
example of such turf-specific hardware registers is shown in
FIG. 6A, which includes the following:

a register “cpReg” that stores data representing a base
address for a memory region in the virtual address space of
the memory system that holds binary instructions (code) for
the turf;

a register “cWKR” that stores data representing an
address range for the memory region in the virtual address
space of the memory system that holds the binary instruc-
tions (code) for the turf;

a register “cppReg” that stores data representing a base
address for a memory region in the virtual address space of
the memory system that stores constants for the turf;

register “cpWKR” that stores data representing an address
range for the memory region in the virtual address space of
the memory system that stores constants for the turf;

a register “dpReg” that stores data representing a base
address for a memory region in the virtual address space of
the memory system that holds operand data for the turf; and

a register “dWKR” that stores data representing an
address range for the memory region in the virtual address
space of the memory system that holds operand data for the
turf.

These memory regions can be specified by the program
loader of the operating system. Note that the turf-specific
registers can be accessed by the corresponding executing
thread for protection checking such that these memory
regions can be accessed securely without checking the iPLB
and/or the dPLB and thus avoids the computational
resources and power in checking the iPLB and/or the dPLB.

The CPU hardware can also include thread-turf specific
hardware registers that store a set of stack addresses and
corresponding descriptors that pertain to the stacklet of each
given thread-turf combination executing on the CPU. The
stack addresses can include an “FP” pointer that points to the
top stack frame in the stacklet, and “SP” pointer that points
to the end of the top stack frame in the stacklet. The stacklet
descriptors can represent an address range that covers the
stack frames of the stacklet (e.g., from the base of the stack
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frame to the “SP” pointer for the stacklet). The stack
addresses and descriptors for the stacklet can be adjusted
dynamically according to the control flow of the program as
stack frames are added (due to the execution of a CALL
operation in the thread-turf combination) and removed (due
to the execution of a RETURN operation in the thread-turf
combination).

The CPU hardware can also include thread-specific hard-
ware registers that store a set of addresses and corresponding
descriptors that pertain to thread local storage of each given
thread executing on the CPU. The addresses can include a
pointer that points to the thread local storage of the given
thread. The descriptors can represent an address range for
the thread local storage of the given thread.

An example of such thread-turf specific hardware regis-
ters and thread-specific hardware registers is shown in FIG.
6B. These hardware registers can be used for protection
checking such that the stacklet frames and/or thread local
storage that corresponds to an executing thread and turf pair
can be accessed securely without involving checking the
iPLB and/or the dPLB. This avoids using the protection
domains defined by the iPLB and/or the dPLB to protect the
stacklet frames and thread local storage of the functions and
services of the program from each other and thus avoids the
computational resources and power in checking the iPL.B
and/or the dPLB. Note that it is possible for one thread-turf
combination (which is referred to as “thread-turf A”) to
access the stack frame(s) of another thread-turf combination
(which is referred to as “thread-turf B”), and the thread-turf
specific hardware registers for thread-turf A will not permit
access to the stack frame(s) for thread-turf B. Consequently,
the iPLB and/or dPLB and/or Permission Tables of the CPU
can include turfs that cover the stack frame(s) of thread-turf
B with appropriate permissions for access by thread-turf A.
In this case, the querying of the iPL.B and/or dPLB and/or
Permission Tables will permit the thread-turf A to access the
stack frame(s) of thread-turf B when deemed appropriate by
the permissions. It is also possible for one thread (which is
referred to as “thread A”) to access the thread local storage
of another thread (which is referred to as “thread B”), and
the thread specific hardware registers for thread A will not
permit access to the thread local storage for thread B.
Consequently, the iPLB and/or dPLB and/or Permission
Tables of the CPU can include turfs that cover the thread
local storage of thread B with appropriate permissions for
access by thread A. In this case, the querying of the iPL.B
and/or dPLB and/or Permission Tables will permit thread A
to access the thread local storage of thread B when deemed
appropriate by the permissions.

Each thread and turf combination has its own stacklet
stored in the virtual address space of the memory system.
When the execution of a thread moves to a different turf (for
example, by the processing of a portal-type CALL operation
as described herein), the whole logical stack for a given
thread is a chain of stacklets as shown in FIG. 6C. Each
stacklet can have its own protection domain, because the
stacklets corresponds to different turfs that can be isolated
from each other. No extra dPLB or iPLB entries are needed
to enforce these security measures. Note that chain of
stacklets for the given thread partitions or segments the
whole logical stack for the given thread. The stacklets,
which are segments of the logical stack for the given thread,
can be chained on a list. In the event that bottom stack frame
of a current stacklet exits, the top stack frame of the next
stacklet down the list can be unwound.

The memory system can also store an info block per
stacklet (which is referred to herein as a “stacklet info
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block™), which is used preserve the stack state of each thread
on each turf in each stacklet. An example of a stacklet info
block is shown in FIG. 6B. In one embodiment, each stacklet
info block can be a single cache line in size and contain data
pointing to the top of stacklet, the base of the stacklet, and
the limit of the stacklet as shown in FIG. 8B.

The stacklets can be automatically allocated by hardware.
In one embodiment, the upper part of the virtual address
space of the memory system of the CPU can be reserved for
stacklets and can be organized as a two-dimensional array
indexed by thread ID and turf ID. The CPU hardware can
compute the address of a stacklet trivially. How large
stacklets are and how many turfs and threads are available
and how much of the virtual address space they hold overall
is implementation specific. In one example, an implemen-
tation that allows 1 million turfs and 1 million threads with
stacklets of 8 Kbytes in size can reserve the upper 8 GB of
the virtual address space of the memory system of the CPU
as the two dimensional array of stacklets.

The stacklet info blocks can also be automatically allo-
cated by hardware. In one embodiment, the virtual address
space of the memory system of the CPU that is reserved for
stacklet info blocks can be a reserved address space indexed
with turf ID and thread ID. Uninitialized stacklet info blocks
(as well as all uninitialized memory) can be implicitly
assigned to zero as described in U.S. patent application Ser.
No. 14/515,231, filed on Oct. 15, 2014, and herein incor-
porated by reference in its entirety. As such, the stacklet info
blocks are automatically initialized to the default state of an
empty stacklet.

Each thread executing on the CPU can also have access to
its own local thread memory block as part of the virtual
address space of the memory system of the CPU. This local
thread memory block can be used to store local operand data
that is generated and/or consumed by an executing thread.
Each thread local memory block can have its own protection
domain, because the thread local memory blocks corre-
sponds to different turfs that can be isolated from each other.

In one embodiment shown in FIG. 7, the Execution/Retire
Logic 109 of the CPU includes at least one functional unit
201A (one shown and labeled “Branch Unit”) that is con-
figured to perform actions for control flow operations (such
as conditional and unconditional BRANCH operations, con-
ditional and unconditional CALL operations and conditional
and unconditional RETURN operations) as well as at least
one functional unit 201B (one shown and labeled “Load/
Store Unit) that is configured to perform actions that load
operand data from or store operand data to the memory
system of the CPU (such as LOAD and STORE operations).
The functional units 201A and 201B interface to hardware
registers 211A, 211B, 211C and 211D as shown. The hard-
ware registers 221A are the specReg registers that stores the
thread ID and turf ID pair(s) for the thread(s) executing on
the CPU. The hardware registers 211B are turf-specific
registers (e.g., cpReg, cWKR, cppReg, cpWKR, dpReg,
dWKR Registers) that stores the turf-specific state informa-
tion for thread-turf pair(s) executing on the CPU. The
hardware registers 211C are thread-turf-specific registers
that stores the thread-turf-specific state information (e.g.,
stacklet addresses and stack frame descriptors) for thread-
turf pair(s) executing on the CPU. The hardware registers
211D are thread-specific registers that stores the thread-
specific information (e.g., thread local storage addresses and
descriptors) for thread-turf pair(s) executing on the CPU.

During the execution of a control flow operation by a
given thread-turf pair, the Branch Unit 201A can access the
base address “cpReg” register of the turf-specific registers
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211B for the given thread-turf pair (and/or possibly one or
more other supported address registers for the given thread-
turf pair) to generate the target address of the control flow
operation and then access the well-known region descriptors
stored in the turf-specific registers 211B for the given
thread-turf pair (e.g., the well-known region descriptor of
the memory region storing instructions (code) for the par-
ticular turf of the thread-turf pair) to determine if the
memory region(s) pointed to by such descriptors (which are
inherently accessible by the given thread-turf pair) cover the
target address of the control flow operation. This condition
can be determined by comparing the virtual address range
for the cache line referenced by the target address to the
virtual address range for the memory region(s) pointed to by
such well-known region descriptors to ascertain whether the
virtual address range for the cache line referenced by the
target address lies within the virtual address range for the
memory region(s) pointed to by such well-known region
descriptors. If so, the transfer of control flow to the target
address is performed without checking the iPLB and/or the
dPLB and thus avoids the computational resources and
power in checking the iPLB and/or the dPLB. This transfer
of control flow can involve the cooperation of the Program
Counter 115 and Prediction Logic 111 to issue a fetch
request to the L1 Instruction Cache 117 to fetch the cache
line referenced by the target address. In this case, protection
checking by the iPLB (and the dPLB) is avoided.

In the event that the memory region(s) pointed to by the
well-known region descriptors stored in the turf-specific
registers 211B for the given thread-turf pair do not cover the
target address of the control flow operation, the Branch Unit
201A can cooperate with the Program Counter 115 and
Prediction Logic 111 to issue a fetch request to the L1
Instruction Cache 117 to fetch the cache line referenced by
the target address. In this case, protection checking by the
iPLB is performed to ascertain whether the instruction-type
turfs stored by the entries of the iPL.B (which can possibly
be hoisted from the Permission Tables if missed in the iPL.B)
dictate that access to the referenced cache line should be
granted or denied for the given thread—turf pair. If such
processing indicates that access should be granted, the
transfer of control flow to the target address is performed. If
such processing indicates that access should be denied, a
protection violation is detected and a fault or other error is
raised by the CPU.

During the execution of a LOAD or STORE operation by
a given thread-turf pair, the Load/Store Unit 201B can
access the base address “dpReg” register of the turf-specific
registers 211B for the given thread-turf pair (and/or possibly
one or more other supported address registers for the given
thread-turf pair) to generate the target address of the LOAD
or STORE operation and then can access the well-known
region descriptors stored in the turf-specific hardware reg-
isters 211B for the given thread-turf pair (e.g., the well-
known region descriptors of the memory regions storing
data and constants for the particular turf of the thread-turf
pair) as well as the descriptors describing the stacklet for the
given thread-turf pair as stored in the thread-turf-specific
registers 211C as well as the descriptors describing the
thread local storage of the thread of the given thread-turf pair
as stored in the thread-specific registers 211D to determine
if the memory region(s) pointed to by such descriptors
(which are inherently accessible by the given thread-turf
pair) cover the effective address of the LOAD or STORE
operation. This condition can be determined by comparing
the virtual address range for the cache line referenced by the
effective address to the virtual address range for the memory
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region(s) pointed to by such descriptors to ascertain whether
the virtual address range for the cache line referenced by the
effective address lies within the virtual address range for the
memory region(s) pointed to by such descriptors. If so, the
LOAD or STORE operation is performed without checking
the iPLB and/or the dPLB and thus avoids the computational
resources and power in checking the iPLB and/or the dPLB.

In the event that the memory region(s) pointed to by the
descriptors stored in the turf-specific registers 211B, the
thread-turf specific registers 211C and the thread-specific
registers 211D for the given thread-turf pair do not cover the
effective address of the LOAD or STORE operation, the
Load/Store Unit 201B can issue a memory request to the [.1
Data Cache 119 to fetch the cache line referenced by the
effective address of the LOAD or STORE operation. In this
case, protection checking by the dPLB is performed to
ascertain whether the data-type turfs stored by the entries of
the dPLB (which can possibly be hoisted from the Permis-
sion Table(s) if missed in the dPLB) dictate that access to the
referenced cache line should be granted or denied for the
given thread—turf pair. If such processing indicates that
access should be granted, the actions of the LOAD or
STORE operation are completed. If such processing indi-
cates that access should be denied, a protection violation is
detected and a fault or other error is raised by the CPU.

The CPU hardware can utilize portals that are stored in the
hierarchical memory system and accessed by an executing
thread to call or invoke functions or services. Such functions
or services can execute in a different protection domain
without switching threads. Each portal includes a set of data
elements that can be accessed by an executing thread to call
(or invoke) a particular function or service. These data
elements include the following:

a target memory address, which is an entry address used
to start the processing (e.g., fetch, decode, issue, execute,
retire) of the instruction(s) of the particular function or
service;

a TurfID for the new context of the thread;

optional data representing state information specific to the
turf associated with the particular function or service (for
example, such state information can be the turf-specific
descriptors for the turf associated with the particular func-
tion or service that are stored in the turf-specific hardware
registers as described above with respect to FIG. 6A).

The data elements of the portal entry can be arranged in
a pre-defined layout as stored in the memory system. An
example of such a layout is shown in FIG. 8 A. The memory
region(s) of the virtual address space of the memory system
of the CPU that store the portal data can have a predefined
permission parameter (which is referred to as “portal”
permission) that permits the memory region to store a valid
portal entry.

The function or service associated with a given portal
entry can provide secure, stateful, callable behavior. The
secure nature of the function or service can be provided by
the separate and distinct protection domains for the Caller
(the program code of a thread that called or invoked the
function or service) and for the Callee function or service
itself (which executes as part of the same thread of the
Caller). This means that the Caller while executing in its
own protection domain cannot directly access and tromp on
the state and variables of the Callee function or service, and
that the Callee function or service itself while executing in
its own protection domain cannot directly access and tromp
on the state and variables of the Caller. The stateful nature
of the function or service can be provided by maintaining
data structures representing the execution state (e.g., such as
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variables and other parameters) of the function or service as
the function or service executes. Note that the execution of
the function or service can continue in the same thread as
that of the Caller while the execution of the Caller is inactive
and does not execute. The callable nature of the function or
service is provided by the portal-type CALL operation,
which allows the function or service to be invoked by the
execution of a CALL operation that does not require a task
switch involving a change in threads.

The processing of a portal entry is triggered by the
execution of a CALL operation with an address argument
that represents a pointer referring to the portal entry. This is
referred to as a portal-type CALL operation. Alternatively,
the address argument(s) of the CALL operation can specify
the entry address of a function (referred to herein as a
“Callee function”) that executes within the same thread and
same protection domain as that of the CALL operation. This
is referred to as a normal-type CALL operation.

The processing of both portal-type and normal-type
CALL operations is described below with reference to the
flowchart of FIGS. 9A and 9B. For the portal-type CALL
operation, the address argument is a pointer to a portal entry
in the virtual address space of the memory system. For the
given thread-turf pair, the range of valid addresses refer-
enced by the address argument (pointer) for portal-type
CALL operations is constrained by the protection domain
for the given thread-turf pair. This protection domain can
include one or more memory regions described by the turfs
of'the iPLB (and Permission Tables) that are associated with
the thread-turf pair and have “portal” permission. For nor-
mal-type CALL operations, the address argument(s) can
specify an absolute address or offset address (such as base+
index, base+index+offset or other offset addressing
schemes) in the virtual memory space of the memory
system. For a given thread-turf pair, the range of valid
addresses referenced by the address argument(s) for normal-
type CALL operations is also constrained by the protection
domain for the given thread-turf pair. This protection
domain can include two parts: i) a memory region storing
instructions (code) for the thread-turf pair (which is pointed
to by well-known region descriptors for the thread-turf pair)
and ii) zero or more memory regions described by the
instruction-type turfs of the iPLB (and the Permission
Tables) that are associated with the thread-turf pair and have
“execute” permission.

In block 901, the functional unit executing the CALL
operation (e.g., the Branch Unit 201A of FIG. 7) evaluates
the address argument(s) of the CALL operation to derive an
effective virtual address for the CALL operation. The base
address “cpReg” register of the turf-specific registers 211B
for the given thread-turf pair (and/or possibly one or more
other supported address registers for the given thread-turf
pair) can be accessed to generate the effective virtual address
for the CALL operation where the address argument of the
CALL operation is an address that is offset from the base
address stored in the “cpReg” register. It is also possible that
the effective virtual address for the CALL operation can be
generated without access to the base address stored in the
“cpReg” register (and/or without access to other supported
address registers for the given thread-turf pair) where self-
relative addressing is used.

In block 903, the Branch Unit (or other CPU hardware)
accesses the hardware register(s) 211B storing the well-
known region descriptors pointing to the memory region
storing instructions (code) for the thread ID—turf ID pair at
the time of the CALL operation.
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In block 905, the Branch Unit (or other CPU hardware)
checks whether the memory region storing instructions
(code) for the turf ID-thread ID pair (as dictated by the
well-known region descriptors accessed in block 903) cover
the effective virtual address resulting from the evaluation of
the address argument(s) in block 901. This condition can be
determined by comparing the virtual address range for the
cache line referenced by the effective virtual address derived
from the address argument(s) in block 901 to the virtual
address range for the memory region(s) pointed to by such
well-known region descriptors to ascertain whether the
virtual address range for the referenced cache line lies within
the virtual address range for the memory region(s) pointed
to by such well-known region descriptors. If the check of
block 905 passes, the operations continue to block 907;
otherwise, the operations continue to block 909.

In block 907, the CALL operation is processed as a
normal-type CALL operation (and not a portal-type CALL
operation) because only normal-type CALL operations (and
not portal-type CALL operations) can specify a target
address within the well-known memory region storing
instructions (code) for the turf of the thread-turf pair. Spe-
cifically, the Branch Unit uses the effective virtual address
resulting from the evaluation of the address argument(s) in
block 901 to update the Program Counter 115. If the
instruction portion referenced by this effective virtual
address is not already stored in the Instruction Buffer 105,
the Instruction Fetch Unit 103 can be controlled to issue a
fetch request to the L1 Instruction Cache 117 for the
instruction portion referenced by this effective virtual
address without protection checking by the iPLB, which
avoids the computational resources and power in checking
the iPLB. In one embodiment, the Instruction Fetch Unit 103
is controlled to fetch a cache line at the virtual address
referenced by the address argument(s) of the CALL opera-
tion. For the normal-type CALL operation, this cache line
stores code of a Callee function that executes in the same
thread and protection domain as that of the call site. In this
manner, these actions initiate transfer of control to the Callee
function that executes within the same thread and same
protection domain as that of the call site (normal-type CALL
operation). Such transfer of control can also involve updat-
ing (e.g., elevating) the quality information for a predictor
entry corresponding to the particular normal-type CALL
operation where the particular normal-type CALL operation
was predicted to be taken and then processed (e.g., fetch,
decode, issue and execution) by speculation. Such transfer
of control can also involve detecting and recovering from a
mispredict where the particular normal-type CALL opera-
tion was predicted to be not taken. In this case, the mispre-
dict recovery can initiate the processing (e.g., fetch, decode,
issue and execution) of the instruction(s) of the Callee
function and update (lower) the quality information for a
predictor entry corresponding to the particular normal-type
CALL operation.

In block 909, the Branch Unit uses the effective virtual
address resulting from the evaluation of the address argu-
ment(s) in block 901 to update the Program Counter 115. If
the instruction portion referenced by this effective virtual
address is not already stored in the Instruction Buffer 105,
the Instruction Fetch Unit 103 can be controlled to issue a
fetch request to the L1 Instruction Cache 117 for the
instruction portion referenced by this effective virtual
address in conjunction with protection checking by the iPLB
(blocks 911 to 921).

In block 911, the iPLB hardware accesses and queries
(looks-up) the entries of iPLB to identify an instruction-type
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turf stored in the iPLB (or possibly stored in the Region
Table if missed in the iPLB) that has i) a thread ID-turf ID
pair that matches the thread ID-turf-ID pair at the time of the
CALL operation and ii) data that specifies a memory region
that covers the virtual address resulting from the evaluation
of the address argument(s) of the CALL operation in block
901. This second condition ii) can be determined by com-
paring the virtual address range for the cache line referenced
by the effective virtual address derived from the address
argument(s) in block 901 to the virtual address range for the
memory region(s) specified by the matching instruction-type
turf to ascertain whether the virtual address range for the
referenced cache line lies within the virtual address range for
the memory region(s) pointed to by the matching instruc-
tion-type turf

Inblock 913, the iPLB hardware processes the permission
parameters for the matching instruction-type turf identified
in block 911 to determine if such permission parameters
specify an “execute” permission throughout.

In block 915, iPLB hardware checks that the permission
parameters processed in block 913 specify an “execute”
permission throughout. If this check passes, the operations
continue to block 917; otherwise, the operations continue to
block 919.

In block 917, the CALL operation is processed as a
normal-type CALL operation (and not a portal-type CALL
operation) because only normal-type CALL operations (and
not portal-type CALL operations) can have target addresses
in a memory region described by a turf with “execute”
permission. Specifically, the iPL.B hardware grants permis-
sion for completion of the fetch request initiated in block
909, which corresponds to the target address of the Callee
function. These actions initiate transfer of control to the
Callee function that executes within the same thread and
same protection domain as that of the call site (normal-type
CALL operation) and the operations end.

In block 919, the iPLB hardware further processes the
permission parameters for the matching instruction-type turf
identified in block 911 to determine if such permission
parameters specify a “portal” permission that permits the
memory region to store a valid portal entry.

In block 921, iPLB hardware checks that the permission
parameters processed in block 919 specify a “portal” per-
mission. If this check passes, the operations continue to
block 923; otherwise, the operations continue to block 925.

In block 923, the CALL operation is processed as a
portal-type CALL operation (and not a normal-type CALL
operation) because only portal-type CALL operations (and
not normal-type CALL operations) can have target addresses
in a memory region described by a turf with “portal”
permission. Specifically, the iPL.B hardware grants permis-
sion for completion of the fetch request initiated in block
909, which corresponds to the virtual address for the portal
entry that is further processed to call (or invoke) a particular
function or service and thus transfer of control to the
particular function or service. Such transfer of control can
involve detecting and recovering from a mispredict where
the particular portal-type CALL operation was predicted to
be not taken. In this case, the mispredict recovery can initiate
the processing (e.g., fetch and subsequent processing) of the
portal entry for the particular portal-type CALL operation as
described below.

In block 925, the target address of the CALL operation
falls outside the protection domain of the thread-turf pair. In
this case, the iPLB hardware denies permission for comple-
tion of the fetch request initiated in block 909 (which can
prohibit the requested cache line from being stored into the
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Instruction Buffer 105) and raises a fault or triggers other
suitable error handling as desired and the processing ends.

FIG. 10 illustrates actions that can be performed by the
CPU hardware for the case of a normal-type CALL opera-
tion (blocks 907 of FIG. 9A or block 917 of FIG. 9B). In
block 1001, the CPU hardware can save in temporary
storage a return address as well as copies of transient
operand data as stored by the CPU hardware that are needed
to be restored upon return. In one embodiment, the return
address and transient operand data can be saved by an
asynchronous hardware engine (referred to a “Spiller”) as
described in U.S. patent application Ser. No. 14/311,988,
filed on Jun. 23, 2014 and herein incorporated by reference
in its entirety. The Spiller can save such information in
temporary storage that is separate and distinct from the
stacklet for the turf ID-thread ID pair. Note that the storage
of the return address in temporary storage that is separate
and distinct from the stacklet can thwart return-oriented
security exploits that are common sources of security vio-
lations in modern computer systems. Also note that in this
case the Callee function executes within the same thread and
turf as the Caller function and thus shares the same well-
known region descriptors specific to this thread ID—turf ID
pair. For this reason, the well-known region descriptors of
the Caller function can be used for execution of the Callee
function and there need not be any actions that involve
switching protection domains between the Caller function
and the Callee function.

In block 1003, the CPU hardware can add a stack frame
to the top of the stacklet for the thread ID—turf ID pair as
stored in the specReg register of the CPU at the time of the
normal-type CALL operation. The CPU hardware can ini-
tialize every new stack frame to zero. The memory address
for the top of the stacklet can be referenced by accessing the
stacklet descriptor information stored in registers of the
CPU. The stacklet descriptor information can loaded from
the stacklet info block that corresponds to the stacklet for the
thread ID—turf ID pair when beginning execution of the
given thread—turf pair and updated according as the new
stack frame is added to the stacklet during execution of the
given thread—turf pair. The stack addresses and stacklet can
include data used by the Callee function (such as descriptors
for arguments passed to the Callee function as well as
constants and variables used in the execution of the Callee
function).

For the case of a portal-type CALL operation, the CPU
hardware is configured to access and process the given
portal entry in order to initiate execution of the function or
service referenced by the given portal entry (block 923 of
FIG. 9B). In most cases (and possibly all cases), the given
function or service will execute in a separate and distinct
protection domain (relative to the protection domain of
Caller function) as part of the same thread as the Caller
function. Thus, the processing of the portal entry does not
involve switching threads and avoids the computation
resources required for thread/task switching. The processing
of the portal entry can involve the actions described below
with respect to flowchart of FIG. 11 where the portal entry
acts as indirect interface mechanism to the execution of the
given function or service.

In block 1101, the CPU hardware can save state infor-
mation specific to the thread ID-turf ID pair at the time of the
portal-type CALL operation in temporary storage. For
example, such thread ID-turf ID pair specific state informa-
tion can include a return address, copies of transient operand
data as stored by the CPU hardware that are needed to be
restored upon return, the address data and well-known
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region descriptors that are associated with the turf ID of the
thread ID-turf ID pair. In one embodiment, such thread-turf
pair specific state information can be saved by the Spiller as
described in U.S. patent application Ser. No. 14/311,988,
filed on Jun. 23, 2014, and incorporated by reference above
in its entirety. The Spiller can save such information in
temporary storage that is outside the protection domain of
the function or service referenced by the portal entry and
thus inaccessible by this function or service. This affords
security features whereby the execution of the service or
function cannot directly access and tromp on the state and
variables of the Caller function. The CPU hardware can also
store the stacklet descriptors that are associated with the
thread ID-turf ID pair in the stacklet info block for thread
ID-turf ID pair as stored in the memory system of the CPU
as described herein.

In block 1103, the CPU hardware can store the turf ID for
the function or service as represented by the second data of
the valid portal entry into the specReg hardware register
211A of the CPU.

In block 1105, the CPU hardware can store state infor-
mation specific to the turf of the function or service refer-
enced by the portal entry (such as the base addresses and
well-known region descriptors for the turf associated with
this function or service) into turf-specific hardware registers
211B of the CPU for use by the function or service refer-
enced by the portal entry. In this action, such state informa-
tion specific to the turf of the function or service can be
loaded from the third data of the valid portal entry as
described herein.

In block 1107, the CPU hardware can store addresses and
descriptors that describe the stacklet for the thread ID-new
turf ID pair of the function or service into the thread-turf-
specific hardware registers 211C of the CPU. In one embodi-
ment, the stacklet addresses and descriptors can be defined
by the data stored in the stacklet info block for the thread
ID-turf ID pair of the function or service referenced by the
portal entry. This stacklet info block can be loaded from
memory and processed to extract and store the stacklet
descriptors into the registers of the CPU. Such stacklet
addresses and descriptors can be used by the function or
service referenced by the portal entry to access the stacklet
in the protection domain that is specific to the thread ID-turf
ID pair of the function or service referenced by the portal
entry. In this case, the CPU hardware can use the stacklet
descriptors for the thread ID-new turf ID pair to add and
access a new stack frame to the memory space of the stacklet
for the thread ID-new turf ID pair. The CPU hardware can
initialize every new stack frame to zero. The memory space
for this stacklet is referenced by the stacklet addresses and
descriptors for the thread ID-new turf ID pair. The stacklet
addresses and descriptors can be used such that the memory
region beyond the top stack frame of the stacklet is inac-
cessible by the executing thread in the new turf ID. These
security measures can thwart exploits that access stack
rubble in the region outside the stack frames for the current
thread. The addresses and stacklet can include data used by
the function or service (such as descriptors to arguments
passed to the function or service as well as constants and
variables used in the execution of the function or service).

Note that execution of a portal-type CALL operation can
involve load requests for two cache lines—one cache line
for the portal entry and one cache line for the stacklet info
block corresponding to the portal entry.

Also note that the portal entries can rely on static assign-
ment of one unique stacklet per thread-turf pair. Further-
more, it is possible for a single thread to include more than
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one portal-type CALL operation into a single function or
service. For example, consider a thread executing in turf A
that includes a portal-type CALL operation to turf B. These
operations will involve two stacklets: one for the particular
thread, turf A pair; and one for the particular thread, turf B
pair. If the thread then includes a portal-type CALL opera-
tion to turf C before returning to turf A, these operations will
comprise three stacklets: one for the particular thread, turf A
pair; one for the particular thread, turf B pair; one for the
particular thread, turf C pair. If then the thread includes a
portal-type CALL operation to turf B, the recursive portal
processing would attempt to again use of the stacklet for the
particular thread, turf B pair, and would destroy the frames
in that stacklet that are in use from the use of thread in turf
B in between turfs A and C. To avoid this error each stacklet
contains at its lowest address a value for the top of stacklet
pointer (TOSP). This pointer indicates the first free location
in the stacklet. In processing the portal-type CALL opera-
tion, the TOSP for the stacklet associated with the portal-
type CALL operation (the current thread-turf pair) is
updated from a hardware top of stack register of the CPU at
the time of the portal-type CALL operation, and top of stack
register of the CPU for the function or service is set from the
TOSP in the stacklet for the thread-turf pair of the function
or service. Because new frames are always allocated at the
current top of stack, new frames allocated at the second or
subsequent transit into the process will not overlap. In order
to use the TOSP in the stacklet for the thread-turf pair of the
function or service in setting the hardware top of stack
register of the CPU, it must be fetched from memory by the
CPU as part of the processing of the portal-type CALL
operation. If there is another portal-type CALL operation to
a function executing in the same thread and turf pair, then
the TOSP will have been set immediately above the previous
frames and using it for the stack pointer will be correct.
However, if this is the first portal-type CALL operation to a
function or service executing in a given thread and turf pair,
then the stacklet has never been used before and the TOSP
location in the stacklet is undefined. It would of course be
possible for the processing of CPU to initialize a TOSP in
every possible stacklet. However, the number of such stack-
lets can be quite large and most will never be used, which
would waste the virtual memory resources of the system.

Instead, the CPU can be configured to take advantage of
the hardware handling of a load-type memory request to the
L1 Data Cache for a value that is undefined, i.e. to a virtual
address that has never been stored to. In this case, the
load-type memory request can be processed by first check-
ing the caches for a cache line matching the virtual address,
and then attempting to translate the virtual address to a
corresponding physical address to probe main memory. The
virtual-to-physical address translation mechanism will not
find a translation page entry in the TLB nor its underlying
tables, and so will report a page trap to the operating system.
That page trap can be configured to recognize that the load
request is a stacklet TOSP request from a portal-type CALL
operation (and not an ordinary program load operation) and
then respond by setting the TOSP to zero or some other fixed
value in a cache line and returning that value as if the TOSP
had already been initialized. That is, a load of an uninitial-
ized TOSP causes the TOSP itself to be initialized when the
load memory request fails translation in the TLB.

The execution of a RETURN operation is carried out by
the Branch Unit 201A (or other CPU hardware). The actions
of the RETURN operation unwinds the most recently
executed CALL operation, whether it be a normal-type or
portal-type CALL operation.
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For the case where the most recently executed CALL
operation is a normal-type CALL operation, the RETURN
operation can involve the actions as described below with
respect to FIG. 12. In block 1201, the Branch Unit (or other
CPU hardware) can use the state information for the thread
ID-turf 1D at the time of the RETURN operation (particu-
larly, the stacklet addresses and descriptors stored in the
thread-turf-specific registers 211C) to remove the top stack
frame for the stacklet pointed to by such stacklet addresses
and descriptors and then update the top of stack address and
descriptors stored in the thread-turf-specific registers 211C
of'the CPU accordingly. The stacklet can also be used to pass
operand data generated by the Callee function to the Caller
function, if need be.

In block 1203, the Branch Unit (or other CPU hardware)
can load from temporary storage of the CPU the return
address of the Caller function being returned to as well as
copies of transient operand data that are needed to be
restored upon return. In one embodiment, such information
can be loaded from temporary storage by the Spiller as
described in U.S. patent application Ser. No. 14/311,988,
filed on Jun. 23, 2014, and incorporated by reference above
in its entirety. Note that in this case the Caller function
executes within the same thread and turf as the Callee
function and thus shares the same well-known region
descriptors specific to this thread ID—turf ID pair. For this
reason, the well-known region descriptors of the Callee
function can be used for execution of the Caller function and
there need not be any actions that involve switching pro-
tection domains between the Callee function and the Caller
function. The transient operand data loaded from temporary
storage and possibly transient operand data generated by the
Callee function and being passed back to the Caller function
can be stored in the operand storage elements of the CPU.

In block 1205, the Branch unit (or other CPU hardware)
can update the Program Counter 115 to the return address of
the Caller function in order to transfer control to the Caller
function. Such transfer of control can also involve detecting
and recovering from a mispredict where the RETURN
operation to the Caller function was predicted to be not
taken. In this case, the mispredict recovery can initiate the
processing (e.g., fetch, decode, issue and execution) of the
instruction(s) of the Caller function. Such transfer of control
can also involve updating the quality information for a
predictor entry corresponding to the RETURN operation to
the Caller function where the RETURN operation to the
Caller function was predicted to be taken and then processed
(e.g., fetch, decode, issue and execution) by speculation.

For the case where the most recently executed CALL
operation is a portal-type CALL operation, the RETURN
operation can involve the actions as described below with
respect to FIG. 13. In block 1301, the Branch unit (or other
CPU hardware) can use the addresses and descriptors for the
stacklet of the thread ID-turf ID pair at the time of the
RETURN operation as stored in the thread-turf-specific
registers 211C to remove the top stack frame for the stacklet
pointed to by such stacklet addresses and descriptors and
then update the top of stack address and descriptors stored
in the thread-turf-specific registers 211C of the CPU accord-
ingly. This stacklet can also be used to pass operand data
generated by the Callee function to the Caller function, if
need be.

In block 1303, the Branch Unit (or other CPU hardware)
can store the updated stacklet descriptors for the thread
ID-turf ID pair at the time of the RETURN operation to the
stacklet info block as stored in the memory system.
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In block 1305, the Branch Unit (or other CPU hardware)
can load from temporary storage of the CPU the return
address of the Caller function being returned to, copies of
transient operand data that are needed to be restored upon
return, and state information specific to the thread ID-turf ID
pair of the Caller function being returned to. In one embodi-
ment, such information can be loaded from temporary
storage by the Spiller as described in U.S. patent application
Ser. No. 14/311,988, filed on Jun. 23, 2014, and incorporated
by reference above in its entirety. The thread-turf specific
state information can include addresses and well-known
region descriptors that are associated with the turf ID of the
Caller function being returned to. The CPU hardware can
also load from memory the stacklet info block for the thread
ID-turf 1D pair of the Caller function being returned to.

In block 1307, the Branch Unit (or other CPU hardware)
can store the addresses and well-known region descriptors
for the turf ID associated with the Caller function being
returned to into the turf-specific hardware registers 211B of
the CPU for use by the executing Caller function. Such
addresses and well-known region descriptors for the turf ID
of the Caller function can be defined by thread ID-turf ID
pair specific state information loaded from temporary stor-
age in block 1305. Such well-known region descriptors can
be used to grant the executing Caller function access to
memory regions for code, constants and data of the Caller
function and thus enforce the protection domain that is
specific to the thread ID-turf ID pair of the Caller function.
The Branch Unit (or other CPU hardware) can also store the
addresses and descriptors for the stacklet of the Caller
function being returned to into the thread-turf-specific hard-
ware registers 211C of the CPU for use by the executing
Caller function. Such addresses and descriptors for the
stacklet of the Caller function can be defined by the data of
the stacklet info block loaded from memory in block 1305.
Such stacklet descriptors can be used to grant the executing
Caller function access to the stacklet and thus enforce the
protection domain that is specific to the thread ID-turf ID
pair of the Caller function. The transient operand data loaded
from temporary storage and possibly transient operand data
generated by the Callee function and being passed back to
the Caller function can be stored in the operand storage
elements of the CPU.

In block 1309, the Branch Unit (or other CPU hardware)
can update the Program Counter 115 to the return address of
the Caller function. Such transfer of control can initiate
processing (fetch, decode, issue, execute, retire) of the
instruction(s) of the Caller function.

The processing of the RETURN operation from the
portal-type CALL operation can be constrained such that it
is executed non-speculatively. This can possibly introduce a
bubble in the decode stage of the CPU, which can involve
a stall of a couple of machine cycles. However, speculative
prefetch actions can be performed with respect to the
RETURN operation in order to reduce the instruction fetch
overhead of the RETURN operation, assuming the predic-
tion for the RETURN operation was correct.

The processing of LOAD and STORE operations by the
Load/Store Unit 201B is described below with reference to
the flow chart of FIGS. 14A and 14B. The LOAD and
STORE operations each include address argument(s) that
can specify an absolute address or offset address (such as
base+index, base+index+offset or other offset addressing
schemes) in the virtual memory space of the memory
system. For a given thread-turf pair, the range of valid
addresses referenced by the address argument(s) for LOAD
operations is constrained by the protection domain for the
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given thread-turf pair. This protection domain can include
two parts: 1) memory regions storing constants and data for
the thread-turf pair (which is pointed to by well-known
region descriptors for the thread-turf pair) and ii) zero or
more memory regions described by the data-type turfs of the
dPLB (and Permission Tables) that are associated with the
thread-turf pair and have “read” permission. For a given
thread-turf pair, the range of valid addresses referenced by
the address argument(s) for STORE operations is con-
strained by the protection domain for the given thread-turf
pair. This protection domain can include two parts: 1)
memory regions storing non-static data for the thread-turf
pair (which is pointed to by well-known region descriptors
for the thread-turf pair) and ii) zero or more memory regions
described by the data-type turfs of the dPLB (and Permis-
sion Tables) that are associated with the thread-turf pair and
have “write” permission.

In block 1401, the Load/Store Unit evaluates the address
argument(s) of the LOAD or STORE operation to derive an
effective virtual address for the operation. The base address
“dpReg” register of the turf-specific registers 211B for the
given thread-turf pair (and/or one or more other supported
address registers for the given thread-turf pair) can be
accessed to generate the effective virtual address for the
LOAD or STORE operation where the address argument of
the LOAD or STORE operation is an address that is offset
from the base address stored in the “dpReg” register. It is
also possible that the effective virtual address for the LOAD
or STORE operation can be generated without access to the
base address stored in the “dpReg” register (and/or without
access to other supported address registers for the given
thread-turf pair) where self-relative addressing is used.

In block 1403, the Load/Store Unit (or other CPU hard-
ware) accesses the hardware register(s) of the CPU storing
the descriptors pointing to the memory region storing con-
stants (only for LOAD) and non-static data (for both LOAD
and STORE) for the turf ID-thread ID pair at the time of the
operation. These registers can include the cWKR and dWKR
hardware registers (211B) specific to the turf of the thread
ID-turf ID pair, registers storing stacklet descriptors (211C)
for thread ID-turf ID pair, and registers storing thread local
storage descriptors (211D) specific to the thread of the
thread ID-turf ID pair.

In block 1405, the L.oad/Store Unit (or other CPU hard-
ware) checks whether the memory regions for the turf
ID-thread ID pair (as dictated by such descriptors accessed
in block 1403) cover the effective virtual address resulting
from the evaluation of the address argument(s) in block
1401. This condition can be determined by comparing the
virtual address range for the cache line referenced by the
effective virtual address to the virtual address range for the
memory region(s) pointed to by the descriptors accessed in
block 1403 to ascertain whether the virtual address range for
the cache line referenced by the effective address lies within
the virtual address range for the memory region(s) pointed
to by such descriptors. If the check of block 1405 passes, the
operations continue to block 1407; otherwise, the operations
continue to block 1409.

In block 1407, the Load/Store Unit uses the effective
virtual address resulting from the evaluation of the address
argument(s) in block 1401 to issue a memory request (a
load-type memory request for a LOAD operation and a
store-type request for a STORE operation) to the L1 Data
Cache 119 of the hierarchical memory system without
protection checking by the dPLB, which avoids the compu-
tational resources and power in checking the dPLB.
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In block 1409, the Load/Store Unit uses the effective
virtual address resulting from the evaluation of the address
argument(s) in block 1401 to issue a memory request (a
load-type memory request for a LOAD operation and a
store-type request for a STORE operation) to the [.L1 Data
Cache 119 in conjunction with protection checking by the
dPLB (blocks 1411 to 1421). Note that for a STORE
operation, the results of any irreversible action that is part of
the STORE operation can be held in a temporary buffer until
the protection check by the dPLB completes successfully. At
that time, the results of such irreversible action can be
effectively written to the L1 Data Cache 119.

In block 1411, the dPLB hardware accesses and queries
(looks-up) the entries of dPLB to identify a data-type turf
stored in the dPLB (or possibly stored in the Permission
Tables if missed in the dPLB) that has i) a thread ID-turf ID
pair that matches the thread ID-turf-ID pair at the time of the
LOAD or STORE operation and ii) data that specifies a
memory region that covers the virtual address resulting from
the evaluation of the address argument(s) of the LOAD or
STORE operation in block 1401. The second condition ii)
can be determined by comparing the virtual address range
for the cache line referenced by the effective virtual address
derived from the address argument(s) in block 1401 to the
virtual address range for the memory region(s) specified by
the matching data-type turf to ascertain whether the virtual
address range for the referenced cache line lies within the
virtual address range for the memory region(s) pointed to by
the matching data-type turf

In block 1413, the dPLB hardware processes the permis-
sion parameters for the matching data-type turf identified in
block 1411 to determine if such permission parameters
specify a “read” permission throughout (for LOAD) or a
“read” permission throughout (for STORE).

In block 1415, the dPLB hardware checks that the per-
mission parameters processed in block 1413 specify the
requisite permissions (“read” permission throughout (for
LOAD) or a “write” permission throughout (for STORE)). If
this check passes, the operations continue to block 1417,
otherwise, the operations continue to block 1419.

In block 1417, the dPLB hardware grants permission for
completion of the memory request initiated in block 1409.

In block 1419, the effective virtual memory address of the
LOAD or STORE operation falls outside the protection
domain of the thread-turf pair. In this case, the dPLB
hardware denies permission for completion of the memory
request initiated in block 1409 (which can prohibit the
requested cache line from being stored into the L1 Data
Cache 119) and raises a fault or triggers other suitable error
handling as desired and the processing ends.

In one embodiment, the CPU hardware can be configured
on boot to provide a root turf containing the entirety of the
virtual address space of the memory system with full rights
for both code and data to the first thread. From there on out
the first thread can utilize GRANT operations to pass on any
right and region subdivision as it sees fit to other threads,
which those threads can also do to what they received. In this
manner, the assignment of protection domains to the execut-
ing threads cascades down the logical chain of threads as
such threads are executed on the CPU.

The entries of the iPLB and dPLB can use a single bit
(referred to herein as a “novel bit”) to manage the discard
process of such entries. Specifically, the entries for newly
granted turfs that are added to the iPLB and the dPLB each
have their novel bit set. The novel bit of the entry is cleared
when the entry is evicted and lowered to the Permission
Tables. The cleared novel bit is included in the PLB entry
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when the turf is hoisted from the Permission Tables when
missed in the iPLB or dPLB. Matching entries for turfs that
have been revoked are looked up in the iPLB or dPLB. If a
matching entry has its novel bit set, the regions descriptor of
the matching entry can be discarded from the iPLB or dPLB
without processing the Permission Tables. If a matching
entry has its novel bit cleared, the turf of the matching entry
can be discarded from the iPLB or dPLB and also discarded
from the Permission Tables (where the discard from the
Permission Tables can be a lazy process if desired).

The processing pipeline of the CPU can also support an
ARGS operation, which ordinarily has nothing to do with
granting rights. As evident from the schematic diagram of
FIG. 15, the actions of the ARGS operation can reserve a
portion of the top stack frame of the current thread-turf pair
(Caller function) by setting a defined hardware register of
the CPU (the “OutP” register) to some value below the stack
pointer “SP” as needed. When processing a portal-type
CALL operation that follows the ARGS operation in the
Caller function, the processing of the portal entry specified
by the a portal-type CALL operation involves the CPU
hardware 1) initializing a stack frame as part of the stacklet
of the Callee function and ii) storing stacklet descriptors for
the stack frame of the stacklet of the Callee function into the
defined thread-turf specific registers of the CPU as described
herein. Such stacklet descriptors can include a pointer “InP”
and “Size” descriptors that describe the reserved portion of
the top stack frame of the Caller function. In this case, the
pointer “InP” can be copied from the pointer value stored in
the “OutP” register for the Caller function. This processing
allows the Callee function to have access to the reserved
portion of the top stack frame of the Caller function. As this
reserved data stack portion is part of the stacklet of the
thread, this processing can be performed for normal-type
CALL operations as well.

Note that the processing of the portal-type CALL opera-
tions as described herein affords an efficient mechanism to
provide separate and distinct protection domains between
the Caller (Source) and Callee (Sink) code portions that
execute in the same thread. Furthermore, the context that
needs to be accessed from memory in crossing the protection
barrier can be contained in two cache lines. Furthermore, the
portal entries that provide gateways between the protection
domains can be user-defined and allow the services that are
referred to by such portal entries to be contained in small
protected packages. Furthermore, the protection domains
defined by the memory regions and turfs of the protection-
lookaside buffer(s) and Region Table can be counted in the
thousands or tens of thousands on a system. This is relatively
coarsely grained security. These features all work together to
provide a flexible, reliable, and efficient security framework.
Specifically, the features can avoid full context switches that
are incredibly expensive. Modern CPUs often spend a third
or more of their cycles on context switches and related
management like TLB and cache shuffling. For example, a
full context switch can run into hundreds of machine cycles
just to change the processor core state. And on top of is
added machine cycle delays due to cache thrashing and the
memory accesses required to switch the working data sets.

There have been described and illustrated herein several
embodiments of a computer processor and corresponding
method of operations. While particular embodiments of the
invention have been described, it is not intended that the
invention be limited thereto, as it is intended that the
invention be as broad in scope as the art will allow and that
the specification be read likewise. For example, the micro-
architecture and memory organization of the CPU as
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described herein is for illustrative purposes only. A wide
variety of CPU microarchitectures can embody the improve-
ment and methods described herein, including microarchi-
tectures that employ in-order execution, microarchitectures
that employ out-of-order execution, superscalar microarchi-
tectures, VLIW microarchitectures, single-core microarchi-
tectures, multi-core microarchitectures, and combinations
thereof. In another example, the functionality of the CPU
101 as described herein can be embodied as a processor core
and multiple instances of the processor core can be fabri-
cated as part of a single integrated circuit (possibly along
with other structures). In still another example, the security
protection mechanisms as described herein can be applied to
memory regions that are defined in the physical address of
main memory of the CPU. In this case, the protection
checking can be carried out in conjunction with virtual-to-
physical address translation mechanism (TLB processing).
The CPU can also implement other adaptations and exten-
sions of the hardware-based protection mechanisms as
described herein. It will therefore be appreciated by those
skilled in the art that yet other modifications could be made
to the provided invention without deviating from its spirit
and scope as claimed.
What is claimed is:
1. A computer processor comprising:
an instruction processing pipeline that interfaces to a
hierarchical memory system employing an address
space, wherein the instruction processing pipeline
includes execution logic that executes at least one
thread in different protection domains over time,
wherein said different protection domains are defined
by descriptors each including first data specifying a
memory region of the address space employed by the
hierarchical memory system and second data specify-
ing permissions for accessing the associated memory
region;
wherein the first data of at least one particular descriptor
specifies a memory region storing a portal correspond-
ing to a given function or service, wherein the portal
acts as an indirect mechanism to the execution of the
given function or service;
wherein the portal includes the following data: i) an ID
that refers to a protection domain which is used during
execution of the given function or service, and ii)
address data that refers to an entry address of the given
function or service;
wherein the instruction processing pipeline is configured
to execute a CALL operation to the portal with a
pointer argument that refers to the portal whereby the
actions of the CALL operation process the portal to
switch to the protection domain referred to by the ID of
the portal.
2. A computer processor according to claim 1, wherein:
the address space comprises one of a virtual address space
and a physical address space.
3. A computer processor according to claim 1, wherein:
a given thread executes in a particular protection domain,
one protection domain ata time; and
the particular protection domain is selectively configured
to change over time.
4. A computer processor according to claim 3, wherein:
the given thread is identified by a first key;
the particular protection domain is identified by a second
key; and
when the given thread executes in the particular protec-
tion domain, the first key is associated with the second
key.
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5. A computer processor according to claim 1, wherein:

the descriptors are stored in at least one hardware table
that is queried in conjunction with servicing requests
that access the hierarchical memory system; and

the at least one hardware table is backed to at least one
permission table stored in the memory system.

6. A computer processor according to claim 5, wherein:

the hierarchical memory system includes a top level
instruction cache separate from a top level data cache;
and

descriptors for memory regions that store instructions are
stored in a first hardware table that is queried in
conjunction with servicing fetch requests that are
issued to the top level instruction cache for accessing
instruction portions stored in the top level instruction
cache, and descriptors for memory regions that store
operand data are stored in a second hardware table that
is queried in conjunction with servicing memory
requests that are issued to the top level data cache for
loading operand data from or storing operand data in
the top level data cache.

7. A computer processor according to claim 6, wherein:

the second data for descriptors stored in the first hardware
table selectively specify an execute permission or a
portal permission;

the second data for descriptors stored in the first hardware
table optionally specify a grant permission;

the second data for descriptors stored in the second
hardware table selectively specify a write permission or
a read permission; and

the second data for descriptors stored in the second
hardware table optionally specify a grant permission.

8. A computer processor according to claim 5, wherein:

the at least one hardware table stores the descriptors in
entries each including a single bit that is processed
when first adding the corresponding entry to the at least
one hardware table and evicting the corresponding
entry from the at least one hardware table in order to
remove the corresponding entry from the at least one
hardware table without accessing the at least one per-
mission table for circumstances when the correspond-
ing entry is not located in the region table.

9. A computer processor according to claim 1, wherein:

the protection domains are further defined by descriptors
for predefined memory regions of the address space
that are stored in hardware registers of the computer
processor.

10. A computer processor according to claim 9, wherein:

the protection domains are defined by turfs each repre-
senting a collection of descriptors, and the predefined
memory regions include at least one memory region
selected from the group including: at least one turf-
specific memory region, at least one thread-turf-spe-
cific memory region, and at least one thread-specific
memory region.

11. A computer processor according to claim 10, wherein:

the at least one turf-specific memory region includes a
first memory region that stores instructions for a par-
ticular turf, a second memory region that stores con-
stants for a particular turf, and a third memory region
that stores data for the particular turf;

the at least one thread-turf-specific memory region
includes a fourth memory region that stores a stack
portion for a particular thread-turf pair; and

the at least one thread-specific memory region includes a
fifth memory region that stores thread local data for a
particular thread.
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12. A computer processor according to claim 9, wherein:

the hardware registers that store the descriptors for the
predefined memory regions of the address space are
accessed and processed in order to perform protection
checking before querying the at least one hardware
table that stores the descriptors for protection checking
in order to avoid the protection checking carried out by
accessing and processing the at least one hardware
table that stores the descriptors in certain circum-
stances.

13. A computer processor according to claim 1, wherein:

the data of the portal further includes iii) state information
that is restored to hardware registers for use during
execution of the particular function or service.

14. A computer processor according to claim 1, wherein:

the second data of the particular descriptor includes a
portal permission; and

the portal permission of the second data of the particular
descriptor is processed in conjunction with the execu-
tion of the CALL operation to the portal to distinguish
it from a normal-type CALL operation.

15. A computer processor according to claim 1, wherein:

the instruction processing pipeline supports a persistent
grant operation that specifies persistent permissions
attached to a given protection domain.

16. A computer processor according to claim 1, wherein:

the instruction processing pipeline supports a transient
grant operation that specifies transient permissions cre-
ated for the purpose of a single transaction between two
different protection domains, wherein the transient per-
missions are automatically revoked when the transac-
tion for which they were created completes.

17. A computer processor according to claim 16, wherein:

the transient permissions are associated with the thread
that makes the transient grant operation and an imme-
diately following a CALL operation to a portal.

18. A computer processor according to claim 1, wherein:

the instruction processing pipeline supports at least one
grant operation that specifies permissions attached to a
given protection domain, wherein the at least one grant
operation employs an index-based protocol for pass-
by-reference permission arguments.

19. A computer processor according to claim 1, wherein:

the instruction processing pipeline supports a guard
operation that sets a reserved bit of a pointer represen-
tation, wherein a callee of a CALL operation to a portal
employs the guard operation to set the reserved bit for
each pass-by-reference argument pointer it receives.

20. A computer processor according to claim 19, wherein

the guard bit has the following semantics:

load or store based on a guarded pointer checks only the
transient grants;

load or store not based on a guarded pointer does not
check transient grants;

pointer load based on a guarded pointer sets the reserved
bit of the loaded pointer;

pointer load that loads a guarded pointer faults;

pointer store based on a guarded pointer must be storing
a guarded pointer (else fault) and clears the guard on it;
and

load effective address preserves guard.

21. A computer processor according to claim 1, wherein:

the instruction processing pipeline supports sessions that
permits both server and client of a respective CALL
operation to a portal to maintain session-related state,
with automatic cleanup at the completion of the ses-
sion.
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22. A computer processor according to claim 21, wherein
the instruction processing pipeline supports least one of the
following operations:

i) a SESSIONBEGIN operation by which a client allo-
cates and initializes a transient permission table distinct
from that used by a GRANT operation;

ii) a SESSIONISSTARTED operation, by which a client
determines if it is a participant in a session which the
server has accepted;

iii) a SESSIONEND operation, by which a client termi-
nates a session and recovers a transient descriptor table
and other session-related resources;

iv) a SESSIONMAKE operation, by which a server can
acknowledge the existence of a session and register a
callback function and state for notification when a
SESSIONEND operation is executed; and

v) equivalent functionality implemented as trapping
operations, as library functions, or other means com-
mon in the art to implement such an operation.

23. A computer processor according to claim 1, wherein:

the instruction processing pipeline supports a protocol
that permits both server and client of a respective
CALL operation to a portal to communicate across a
protection-domain boundary.

24. A computer processor according to claim 23, wherein
the protocol includes at least one of the following opera-
tions:

i) a GRANT operation that conveys from client to server
the right to access a region of the address space
accessible to the client for use in one or more activities
of the server as identified by individual permissions,
where the rights conveyed are transient and are auto-
matically revoked when the server returns from the
CALL operation to a portal;

i) a RELAY operation that conveys from the server
(acting as a client) to a nested relaying server the right
to access a region of the address space accessible to the
client for use in one or more activities of the server as
identified by individual permissions, where the rights
conveyed had been granted to the relaying server rather
than being possessed directly by the relaying server ;

iii) a PERSIST operation by which rights granted to the
server by a GRANT or RELAY operation may be made
persistent and survive the server return from the CALL
operation to a portal;

iv) a CALLAS operation, by which the server may make
a CALL operation to a portal using an address con-
tained in a transient descriptor;

v) a LOADAS operation, by which the server may load a
value from a memory location described by a transient
descriptor;

vi) a STOREAS operation, by which the server may store
a value to a memory location described by a transient
descriptor;

vii) a COPYFROMAS operation, by which the server
may copy the contents of a memory region described
by a transient descriptor to a memory region private to
the server;

viii) a COPYTOAS operation, by which the server may
copy the contents of a memory region private to the
server to a memory region described by a transient
descriptor;

ix) a GRANTSIZE operation, by which the server can
determine the size in bytes of a memory region
described by a transient descriptor;
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x) a GRANTGRANTER operation, by which the server
can determine the identity of an ultimate granter (dis-
regarding intermediate relays) of a transient descriptor;

xi) a GRANTRIGHTS operation, by which the server can
determine which or the possible usage permissions are
conveyed by a transient descriptor; and

xii) equivalent functionality implemented as trapping
operations, as library functions, or other means com-
mon in the art to implement such operations.

25. A computer processor according to claim 1, wherein:

each protection domain is associated with at least one
region of the address space called a plot;

each plot constitutes a private address space, unique to the
protection domain, overlaid on the global shared
address space;

for any memory location, it is possible to determine its
address in a local plot address space if given the global
address and the identifier of the protection domain of
that plot;

for any memory location, it is possible to determine its
address in the global address space if given the local
address in the plot and also the identifier of the pro-
tection domain of that plot; and

machine pointers carry meta-information by which it can
be determined for any pointer whether it refers to the
global address space or to some local plot address
space.

26. A computer processor according to claim 25, wherein:

the global address corresponding to a local plot address is
determined by XORing the local address with the
identifier of the protection domain associated with the
plot; and

the local plot address corresponding to a global address is
determined by XORing the global address with the
identifier of the protection domain associated with the
plot.

27. A computer processor according to claim 1, wherein:

certain memory address locations referred to as spillets
are reserved for use for holding machine state;

each spillet is associated with a single protection domain
and with a single thread of execution, where the pro-
tection domains and threads have numerical identifiers;

the location of the spillet corresponding to a given thread
and protection domain can be determined from the
identifiers of the thread and protection domain;

spillets are accessible only to hardware and trusted soft-
ware, not to the application thread associated with the
spillet; and

a change to the protection domain in which the thread is
operating inherently changes which spillet is associated
with the thread/protection domain at that point of
execution.
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28. A computer processor according to claim 27, wherein:
the location of a spillet for a given protection domain and
thread combination is determined by treating the spillet
region as a two-dimensional array of spillets in a statically
known region legion of the address space, indexed by the
protection domain and thread identifiers.

29. A computer processor according to claim 27, wherein:

a spillet can be marked as 1) running where the associated
thread is currently in execution by a CPU core and
running in the associated protection domain or ii)
parked where the associated thread is not currently in
execution by any core, but such that if a core were
assigned to it the associated thread world resume
execution running in the associated protection domain
or iii) blocked where the associated thread is not
currently in execution by any core, and is not eligible
to be assigned a core because of nested portal calls or
iv) disused.

30. A computer processor according to claim 29, wherein
the instruction processing pipeline supports at least one of
the following operations:

a SPAWN operation, whereby a disused spillet is allo-

cated, changed to the parked state, and initialized with
a function and state arguments such that a CPU core
assigned to the associated thread begins executing the
function with the state arguments in the associated
protection domain;

a DISPATCH operation, by which a running thread trans-
fers its CPU core to the thread of a parked spillet
changing its state to running, becoming itself parked;
and

a SUICIDE operation, by which a running thread transfers
its CPU core to the thread of a parked spillet changing
its state to running, becoming itself disused and recov-
ering attached resources; and

a FRATRICIDE operation, by which a running thread
causes a parked spillet to change to disused, recovering
associated resources.

31. A computer processor according to claim 1, wherein:

the CALL operation to the portal provides for exchange of
arguments and results between caller and callee but
neither party can see or modify any other state of the
other party.

32. A computer processor according to claim 1, wherein:

the instruction processing pipeline supports a grant opera-
tion that specifies permissions attached to a given
protection domain, wherein the permissions of the
grant operation specity rights in the given protection
domain, and wherein the grant operation is invoked by
a grantor that is required to possess persistent permis-
sions covering the memory range of the given protec-
tion domain with at least the granted rights.
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