a2 United States Patent
Kahlich et al.

US009965274B2

US 9,965,274 B2
May 8, 2018

(10) Patent No.:
45) Date of Patent:

(54) COMPUTER PROCESSOR EMPLOYING
BYPASS NETWORK USING RESULT TAGS
FOR ROUTING RESULT OPERANDS

(71) Applicant: Mill Computing, Inc., Palo Alto, CA
(US)

(72) Inventors: Arthur David Kahlich, Sunnyvale, CA
(US); Roger Rawson Godard, East
Palo Alto, CA (US)

(73) Assignee: Mill Computing, Inc., Palo Alto, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 185 days.

(21) Appl. No.: 14/515,248
(22) Filed: Oct. 15, 2014

(65) Prior Publication Data
US 2015/0106598 A1 Apr. 16, 2015

Related U.S. Application Data
(60) Provisional application No. 61/890,891, filed on Oct.

15, 2013.
(51) Imt.CL
GO6F 12/1045 (2016.01)
GO6F 12/1027 (2016.01)
GO6F 12/02 (2006.01)
GO6F 12/0864 (2016.01)
GO6F 12/0811 (2016.01)
(Continued)
(52) US. CL

CPC ... GO6F 9/30032 (2013.01); GOGF 9/30145
(2013.01); GO6F 9/3826 (2013.01); GO6F

9/3828 (2013.01); GO6F 12/0292 (2013.01);

GO6F 12/0811 (2013.01); GO6F 12/0864

(2013.01); GOGF 12/0893 (2013.01); GO6F

From Operand 401A

Storage Element
Array

Tag
L1 Matching
Control

405B
Tag L

Matching|
Mux

Control

1271027 (2013.01); GOG6F 12/1045 (2013.01);
GOGF 12/0897 (2013.01); GOGF 12/1009
(2013.01); GOG6F 17/30286 (2013.01); GO6F
2212/1024 (2013.01);, GO6F 2212/1028
(2013.01); GOG6F 2212/283 (2013.01); GO6F
2212/608 (2013.01); GO6F 2212/6032
(2013.04); GOG6F 2212/684 (2013.01); Y02B
60/1225 (2013.01)
(58) Field of Classification Search

CPC ..ot GOG6F 9/3826; GOGF 9/3828

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5/1992 Garde
9/1999 Garde

(Continued)

5,111,431 A
5,954,811 A

OTHER PUBLICATIONS

Tariq Jamil, RAM versus CAM, 1997, IEEE, 0278-6648/97, 4
pages.*
(Continued)

Primary Examiner — Jyoti Mehta
(74) Attorney, Agent, or Firm — Gordon & Jacobson,
P.C.

(57) ABSTRACT

A computer processor is provided with a plurality of func-
tional units that performs operations specified by the at least
one instruction over the multiple machine cycles, wherein
the operations produce result operands. The processor also
includes circuitry that generates result tags dynamically
according to the number of operations that produce result
operands in a given machine cycle. A bypass network is
configured to provide data paths for transfer of operand data
between the plurality of functional units according to the
result tags.

10 Claims, 3 Drawing Sheets

? To Operand Storage
o Element Array
F A 4
O
x
@
®
a)
"’ F
o
L]
=
ki
=
=3
8
x
@
ko]
s
3
8 Bypass Data
3‘C— Paths
Operand Storage
Element

109
Execution Logic

Dynamic Tag Generation and 403
Tag Routing Circuit and Control

US 9,965,274 B2

Page 2
(51) Imt. ClL
GO6F 12/0893 (2016.01)
GO6F 9/30 (2018.01)
GO6F 9/38 (2018.01)
GO6F 12/1009 (2016.01)
GO6F 17/30 (2006.01)
GO6F 12/0897 (2016.01)
(56) References Cited
U.S. PATENT DOCUMENTS
6,128,721 A * 10/2000 Yungcccocenu. GOG6F 9/3012
712/23

8,095,780 B2 1/2012 Leijten

OTHER PUBLICATIONS

Register File Characterization, Nov. 28, 2004, 19 pages, [retrieved
from the internet on Feb. 3, 2016], retrieved from URL <www.
ecse.rpi.edu/frisc/theses/Campbell Thesis/chapter3 html>.*

* cited by examiner

U.S. Patent May 8, 2018 Sheet 1 of 3 US 9,965,274 B2

f101
CPU/Core Memory System
92 T y
y 117
L2 Cache
A A
Y f113] F115
L1 Instruction Cache L1 Data Cache
A A
Y F103
» |nstruction Fetch Unit

Instruction Buffer

111 T
Program | Decode Stage
Counter

v 109

Execution Logic |

Y 105

Fetch—— Decode ——» Issue ——» Execute ——» Retire

FIG. 2

U.S. Patent May 8, 2018 Sheet 2 of 3 US 9,965,274 B2

Y Y Y Y Y
|

203
Operand Storage Elements (e.g., Belt or Register File)

205

Execution Logic

FIG. 3

US 9,965,274 B2

Sheet 3 of 3

May 8, 2018

U.S. Patent

syled
eleq ssedAg

¥ Old

[oJ1u0D) pue unaliD Buitnoy be|
movt\ pue uonelauas) be| siweulq

. 21607 uolnoaxg
60l

A

N

Aelly uawa|g

/

Juswig|3
abeloig pueladQ

y Vv Y
[ou0D

XN
“louiyoen

B
asoy—/ | Mﬁ

*
/7 AA

_ |[0Ju0D

XN
PIGuIyolen

A A4

A 4

A

A

r v

y

abelo)s puesedo oL

dlob be|
Aelly

Wwsw|3 abeuois

vioy pueladQ wo.4

Be| ynsay/eieq ynsay||bel ynsay/eieq ynsay J

US 9,965,274 B2

1
COMPUTER PROCESSOR EMPLOYING
BYPASS NETWORK USING RESULT TAGS
FOR ROUTING RESULT OPERANDS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present disclosure claims priority from U.S. Provi-
sional Patent Appl. No. 61/890,891, filed on Oct. 15, 2013,
entitled “Cache Support for a Computer Processor,” herein
incorporated by reference in its entirety.

BACKGROUND
1. Field
The present disclosure relates to computer processing
systems.

2. State of the Art

A computer processor (and the program which it
executes) performs operations (such as ADD, MULTIPLY,
etc.) that transforms source data (argument operands) into
result data (result operands). Operations can accept one or
more arguments and yield one or more results. Operations
are encoded by instructions. Each instruction can encode
one or several operations. The result operands of operations
in a particular instruction can be selectable as argument
operands by one or more operations in following instruc-
tions. In modern computer processors, a bypass network
routes result operands produced by the execution of one or
more preceding instructions to the appropriate inputs of the
functional units of the processor for use as argument inputs
in subsequent operations performed by the functional units.

SUMMARY OF THE INVENTION

This summary is provided to introduce a selection of
concepts that are further described below in the detailed
description. This summary is not intended to identify key or
essential features of the claimed subject matter, nor is it
intended to be used as an aid in limiting the scope of the
claimed subject matter.

Tlustrative embodiments of the present disclosure are
directed to a computer processor with a plurality of func-
tional units that performs operations specified by the at least
one instruction over the multiple machine cycles, wherein
the operations produce result operands. The computer pro-
cessor also includes circuitry that generates result tags
dynamically according to the number of operations that
produce result operands in a given machine cycle. A bypass
network that provides data paths for transfer of result
operands between the plurality of functional units according
to said result tags.

Additional features of the bypass network are disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram of a computer
processing system according to an embodiment of the pres-
ent disclosure.

FIG. 2 is a schematic diagram of exemplary pipeline of
processing stages that can be embodiment by the computer
processor of FIG. 1.

FIG. 3 is schematic illustration of components that can be
part of the execution logic of the computer processor of FIG.
1 according to an embodiment of the present disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 is schematic illustration of a bypass network as
part of the execution logic of the computer processor of FIG.
1 according to an exemplary embodiment of the present
disclosure.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Tustrative embodiments of the disclosed subject matter
of the application are described below. In the interest of
clarity, not all features of an actual implementation are
described in this specification. It will of course be appreci-
ated that in the development of any such actual embodiment,
numerous implementation-specific decisions must be made
to achieve the developer’s specific goals, such as compli-
ance with system-related and business-related constraints,
which will vary from one implementation to another. More-
over, it will be appreciated that such a development effort
might be complex and time-consuming but would neverthe-
less be a routine undertaking for those of ordinary skill in the
art having the benefit of this disclosure.

As used herein, the term “operation” is a unit of execu-
tion, such as an individual add, load, store or branch
operation.

The term “instruction” is a unit of logical encoding
including zero or more operations. For the case where an
instruction includes multiple operations, the multiple opera-
tions are semantically performed together.

The term “hierarchical memory system” is a computer
memory system storing instructions and operand data for
access by a processor in executing a program where the
memory is logically organized in a hierarchical arrangement
of'levels of memory with increasing access latency from the
top level of memory closest to the processor to the bottom
level of memory furthest away from the processor.

The term “cache line” or “cache block” is a unit of
memory that is accessed by a computer processor. The cache
line includes a number of bytes (typically 4 to 128 bytes).

In accordance with the present disclosure, a sequence of
instructions is stored in a hierarchical memory system 101
and processed by a CPU (or Core) 102 as shown in the
exemplary embodiment of FIG. 1. The CPU (or Core) 102
includes a number of instruction processing stages including
at least one instruction fetch unit (one shown as 103), at least
one instruction buffer or queue (one shown as 105), at least
one decode stage (one shown as 107) and execution logic
109 that are arranged in a pipeline manner as shown. The
CPU (or Core) 102 also includes at least one program
counter (one shown as 111), at least one L1 instruction cache
(one shown as 113), an [.1 data cache 115 and a shared
instruction/data L2 Cache 117.

The L1 instruction cache 113, the L1 data cache 115 and
the [.2 cache are logically part of the hierarchical memory
system 101. The L1 instruction cache 113 is a cache memory
that stores copies of instruction portions stored in the
memory system 101 in order to reduce the latency (i.e., the
average time) for accessing the instruction portions stored in
the memory system 101. In order to reduce such latency, the
L1 instruction cache 113 can take advantage of two types of
memory localities, including temporal locality (meaning that
the same instruction will often be accessed again soon) and
spatial locality (meaning that the next memory access for
instructions is often very close to the last memory access or
recent memory accesses for instructions). The L1 instruction
cache 113 can be organized as a set-associative cache
structure, a fully associative cache structure, or a direct
mapped cache structure as is well known in the art. Simi-

US 9,965,274 B2

3

larly, the L1 data cache 115 is a cache memory that stores
copies of operands stored in the memory system 101 in order
to reduce the latency (i.e., the average time) for accessing
the operands stored in the memory system 101. In order to
reduce such latency, the [.1 data cache 115 can take advan-
tage of two types of memory localities, including temporal
locality (meaning that the same operand will often be
accessed again soon) and spatial locality (meaning that the
next memory access for operands is often very close to the
last memory access or recent memory accesses for oper-
ands). The L1 data cache 115 can be organized as a set-
associative cache structure, a fully associative cache struc-
ture, or a direct mapped cache structure as is well known in
the art. The shared L2 Cache 117 stores both instructions and
data. The .2 cache 117 can be organized as a set-associative
cache structure, a fully associative cache structure, or a
direct mapped cache structure as is well known in the art.
The hierarchy of the memory system 201 can also include
additional levels of cache memory, such as a level 3 cache,
as well as main memory. One or more of these additional
levels of the cache memory can be integrated with the CPU
102 as is well known. The details of the organization of the
memory hierarchy are not particularly relevant to the present
disclosure and thus are omitted from the figures of the
present disclosure for sake of simplicity.

The program counter 111 stores the memory address for
a particular instruction and thus indicates where the instruc-
tion processing stages are in processing the sequence of
instructions. The memory address stored in the program
counter 111 can be used to control the fetching of the
instructions by the instruction fetch unit 103. Specifically,
the program counter 111 can store the memory address for
the instruction to fetch. This memory address can be derived
from a predicted (or resolved) target address of a control-
flow operation (branch or CALL operation), the saved
address in the case of a RETURN operation, or the sum of
memory address of the previous instruction and the length of
previous instruction. The memory address stored in the
program counter 111 can be logically partitioned into a
number of high-order bits representing a cache line address
($ Cache Line) and a number of low-order bits representing
a byte offset within the cache line for the instruction.

The instruction fetch unit 103, when activated, sends a
request to the L1 instruction cache 113 to fetch a cache line
from the L1 instruction cache 113 at a specified cache line
address ($ Cache Line). This cache line address can be
derived from the high-order bits of the program counter 111.
The L1 instruction cache 113 services this request (possibly
accessing lower levels of the memory system 101 if missed
in the L1 instruction cache 113), and supplies the requested
cache line to the instruction fetch unit 103. The instruction
fetch unit 103 passes the cache line returned from the .1
instruction cache 113 to the instruction buffer 105 for storage
therein.

The decode stage 107 is configured to decode one or more
instructions stored in the instruction buffer 105. Such decod-
ing generally involves parsing and decoding the bits of the
instruction to determine the type of operation(s) encoded by
the instruction and generate control signals required for
execution of the operation(s) encoded by the instruction by
the execution logic 109.

The execution logic 109 utilizes the results of the decode
stage 107 to execute the operation(s) encoded by the instruc-
tions. The execution logic 109 can send a load request to the
L1 data cache 115 to fetch data from the [.1 data cache 115
at a specified memory address. The [.1 data cache 115
services this load request (possibly accessing the [.2 cache

10

15

20

25

30

35

40

45

50

55

60

65

4

117 and lower levels of the memory system 101 if missed in
the L1 data cache 115), and supplies the requested data to the
execution logic 109. The execution logic 109 can also send
a store request to the L1 data cache 115 to store data into the
memory system at a specified address. The .1 data cache
115 services this store request by storing such data at the
specified address (which possibly involves overwriting data
stored by the data cache and lowering the stored data to the
L2 Cache 117 and lower levels of the hierarchical memory
system).

The instruction processing stages of the CPU (or Core)
102 can achieve high performance by processing each
instruction and its associated operation(s) as a sequence of
stages each being executable in parallel with the other
stages. Such a technique is called “pipelining.” An instruc-
tion and its associated operation(s) can be processed in five
stages, namely, fetch, decode, issue, execute and retire as
shown in FIG. 2.

In the fetch stage, the instruction fetch unit 103 sends a
request to the L1 instruction cache 113 to fetch a cache line
from the L1 instruction cache 113 at a specified cache line
address ($ Cache Line). The instruction fetch unit 103 passes
the cache line returned from the L1 instruction cache 113 to
the instruction buffer 105 for storage therein.

The decode stage 107 decodes one or more instructions
stored in the instruction buffer 107. Such decoding generally
involves parsing and decoding the bits of the instruction to
determine the type of operation(s) encoded by the instruc-
tion and generating control signals required for execution of
the operation(s) encoded by the instruction by the execution
logic 109.

In the issue stage, one or more operations as decoded by
the decode stage are issued to the execution logic 109 and
begin execution.

In the execute stage, issued operations are executed by the
functional units of the execution logic 109 of the CPU/Core
102.

In the retire stage, the results of one or more operations
produced by the execution logic 109 are stored by the
CPU/Core 102 as transient result operands for use by one or
more other operations in subsequent issue/execute cycles.

The execution logic 109 includes a number of functional
units (FUs) which perform primitive steps such as adding
two numbers, moving data from the CPU proper to and from
locations outside the CPU such as the memory hierarchy,
and holding operands for later use, all as are well known in
the art. Also within the execution logic 109 is a connection
fabric or interconnect network connected to the FUs so that
data produced by a producer (source) FU can be passed to
a consumer (sink) FU for further storage or operations. The
FUs and the interconnect network of the execution/retire
logic 109 are controlled by the executing program to accom-
plish the program aims.

During the execution of an operation by the execution
logic 109 in the execution stage, the functional units can
access and/or consume transient operands that have been
stored by the retire stage of the CPU/Core 102. Note that
some operations take longer to finish execution than others.
The duration of execution, in machine cycles, is the execu-
tion latency of an operation. Thus, the retire stage of an
operation can be latency cycles after the issue stage of the
operation. Note that operations that have issued but not yet
completed execution and retired are “in-flight.” Occasion-
ally, the CPU/Core 102 can stall for a few cycles. Nothing
issues or retires during a stall and in-flight operations remain
in-flight.

US 9,965,274 B2

5

FIG. 3 is a schematic diagram illustrating the architecture
of an illustrative embodiment of the execution logic 109 of
the CPU/Core 102 of FIG. 1 according to the present
disclosure, including a number of functional units 201. The
execution logic 109 also includes a set of operand storage
elements 203 that are operably coupled to the functional
units 201 of the execution logic 109 and configured to store
transient operands that are produced and referenced by the
functional units of the execution logic 109. An interconnect
network 205 provides a physical data path from the operand
storage elements 203 to the functional units that can possibly
consume the operand stored in the operand storage elements.
The interconnect network 205 can also provide the func-
tionality of a bypass routing circuit (directly from a producer
functional unit to a consumer function unit).

FIG. 4 is schematic illustration of a bypass network as
part of the execution logic of the computer processor of FIG.
1 according to an exemplary embodiment of the present
disclosure. More specifically, the execution logic 109
includes a number of functional units (for example, two
show as 401A and 401B that perform operations that trans-
form source data (argument operands) into result data (result
operands). Operations can accept one or more argument
operands as inputs and yield one or more result operands as
output. The execution logic 10 also includes a circuit 403
that is configured to dynamically generate operand result
tags (or result tags) that are associated with the result data
that is produced by the functional units over the machine
cycles of execution of the execution logic 109. The results
tags are numeric values that refer to the result operands
produced by the functional units in executing operations.
Thus, a particular result tag refers to a particular result
operand produced by a functional unit in executing an
operation (or possibly a sequence of operations).

The circuit 403 can dynamically generate operand result
tags and associate (assign) the result tags to particular result
data in a variety of ways. For example, an operand tag can
be a derived single value that stays constant while referring
to the same result data until either the result data or the result
tag is no longer valid. At this time, the operand tag can be
used to refer to different operand result data. In this case,
operand tags can be values that are selected from a set of
possible values that are reused.

In one embodiment, the functional units of the execution
logic 109 can be organized as multiple slots where a single
slot can execute operations of mixed latency while retaining
the ability to issue one of many supported operations each
cycle. As a consequence, it is possible for a single slot to
produce the results of several operations in the same cycle.
For example, if a three-cycle operation is issued in cycle
zero, a two-cycle operation in cycle one, and a one-cycle
operation in cycle two, then all three operations will produce
their results in cycle three. To keep the results from collid-
ing, separate output registers can be provided for each
operation latency present on the slot, and operations employ
data paths to steer their results to the output register appro-
priate for the latency of the operation. In this configuration,
each one of the output registers produces result data for the
given slot result data from the view of the bypass network.
Specifics of this organization are described in U.S. patent
application Ser. No. 14/312,274, filed on Jun. 23, 2014,
herein incorporated by reference in its entirety. In this
embodiment, the slots are assigned numbers and all result
data produced by the slots includes a valid bit that indicates
the corresponding result data is valid output. Each new result
data (result operand) that is produced by the functional units
in a particular machine cycle is assigned a result tag value

10

15

20

25

30

35

40

45

50

55

60

65

6

by adding the valid bits for all of the lower numbered slots
and lower latency slot outputs that produce valid result data
during this machine cycle to an initial value (which begins
at zero). In this manner, the result operands that are produced
in a given machine cycle are assigned different result tag
values. For each valid result tag, an increment circuit is
incremented by the number of result operands generated in
each machine cycle to provide the initial value for generat-
ing the values of the operand result tags in the subsequent
machine cycle. The predictable nature of the assignments
allows compiler code generation logic tracking the result tag
values to be similar in nature to a standard register allocation
scheme.

In another embodiment, the circuit 403 can dynamically
generate operand result tags and associate (assign) the result
tags to particular result data by generating unique operand
tag values for each operand produced during a given
machine cycle for a group of result operands. One way this
could be done is by assigning each operand a tag value
starting at zero and incrementing monotonically for each
additional operand that produces result operands during that
same machine cycle.

In yet another embodiment, the circuit 403 can dynami-
cally generate operand result tags and associate (assign) the
result tags to particular result data by generating new unique
operand tag values for each operand it retains in storage.
Result operands that have already been produced the func-
tional units in a given machine cycle can have their result
tags incremented by the number of operands that are sub-
sequently produced in the given machine cycle. If the
operand result tag value is incremented beyond the maxi-
mum result tag value, the operand result tag is no longer
valid.

The circuit 403 also performs routing of the results tag
generated in a given machine cycle to appropriate tag match
mux control circuits 405A and 405B as shown. The operand
tags (each with a valid bit) and the corresponding result data
as produced by the functional units are broadcast together
over the bypass data paths for supply as inputs to the
appropriate functional units (or for storage in an operand
storage element array, such as a register file or belt).

The tag match mux control circuits 405A, 405B are
selector circuits for inputs to a corresponding functional
unit. Each respective tag match mux control circuits 405A,
405B includes a result tag comparator for each result output
that can possibly be carried on the bypass data paths. The
result tag comparator compares the operand result tag value
carried on the bypass data path to the operand tag value to
be selected as forwarded on by the circuit 403. If the output
of the result tag comparator indicates that the operand result
tag value carried on the bypass data path matches the
operand tag value to be selected as forwarded on by the
circuit 403 (possibly the operand result tag value carried on
the bypass data path is signaled to be valid), then the
corresponding result data carried on the bypass data paths is
selected and routed as a valid input to the corresponding
functional unit. This embodiment may or may not require
only one result tag to match the operand tag value to be
selected as forwarded on by the circuit 403. This embodi-
ment may also contain logic to detect that no valid match (or
multiple valid matches) exist between any result tag value
carried on the bypass data paths and the operand tag value
to be selected as forwarded on by the circuit 403 during a
particular machine cycle, and this logic may signal either or
both of these conditions as a fault. The operation of the tag
match mux control circuits 405A, 405B can be used to steer

US 9,965,274 B2

7

result operand to appropriate functional units according to
the execution of the program.

In this manner, the tag match mux control circuits 405A,
405B can be configured to receive from the operation field
of the instruction a result tag to be used as a source for the
operation as carried out by the corresponding functional
unit. This singular result tag from the operation field is then
compared simultaneously with all of the result tags carried
on the bypass data paths for a match. There may be only zero
or one match. The mux is constructed such that it has a select
control input for each bypass result location, where at most
only one select control input may be true at any time.

Furthermore, the tag match mux control circuits 405A,
405B are controlled by the current state of the tag valid
signal that is part of the result tag carried on the bypass data
paths. In generating the result tags, valid tags can be
incremented by the number of results arriving at any one
time. If the tag is not valid, then the tag is only made valid
when there is a valid result arriving and the value is
determined by the result within the operation (operations
may have multiple results) and the position of the operation
within the instruction. When the tag is valid, the overflow
determines whether the future tag value is valid or not. If
overflow, then set the tag valid to false, otherwise the tag
value stays true.

In another embodiment, a plurality of signals are associ-
ated with each possible valid result tag value. These signals
are the selected values of either a variable synchronous shift
register or computation circuit results. In this embodiment
each result selection circuit does not contain a set of tag
comparators for each selector input. Instead, the desired
operand tag is used to drive a binary addressed selector. The
advantage of this embodiment may be a reduced number of
wires carrying results to each result consuming circuit,
thereby decreasing selection circuit delay and possibly
reducing the space required for interconnect. The disadvan-
tage of this embodiment may be an increase in the circuit
delay required to generate the plurality of signals corre-
sponding to each possible valid result tag value.

There have been described and illustrated herein several
embodiments of a computer processor and corresponding
method of operations. While particular embodiments of the
invention have been described, it is not intended that the
invention be limited thereto, as it is intended that the
invention be as broad in scope as the art will allow and that
the specification be read likewise. For example, the micro-
architecture and memory organization of the CPU 101 as
described herein is for illustrative purposes only. A wide
variety of CPU microarchitectures can embody the improve-
ment and methods described herein, including microarchi-
tectures that employ in-order execution, microarchitectures
that employ out-of-order execution, superscalar microarchi-
tectures, VLIW microarchitectures, single-core microarchi-
tectures, multi-core microarchitectures, and combinations
thereof. In another example, the functionality of the CPU
101 as described herein can be embodied as a processor core
and multiple instances of the processor core can be fabri-
cated as part of a single integrated circuit (possibly along
with other structures). It will therefore be appreciated by
those skilled in the art that yet other modifications could be
made to the provided invention without deviating from its
spirit and scope as claimed.

What is claimed is:

1. A computer processor comprising:

a plurality of functional units that perform operations over

multiple machine cycles, wherein the operations pro-
duce result operands;

10

15

20

25

30

35

40

45

50

55

60

8

circuitry that generates result tags dynamically according
to a number of result operands produced by the plu-
rality of functional units in a given machine cycle;

a bypass network that provides data paths for transfer of
result operands between the plurality of functional
units, wherein result tags and corresponding result
operands are broadcast together over the data paths of
the bypass network; and

a plurality of selector circuits associated with the plurality
of functional units, wherein each selector circuit is
configured to selectively route a result operand carried
on a given data path of the bypass network as an input
to an associated functional unit based on operation of a
result tag comparator that compares a result tag carried
on the given data path of the bypass network to a
dynamically selected result tag;

wherein the plurality of selector circuits is controlled by
tag valid signals that are part of the result tags gener-
ated dynamically according to the number of result
operands and carried on the data paths of the bypass
network.

2. A computer processor according to claim 1, wherein:

the dynamically selected result tag corresponds to the
result operand that is to be used as an input by the
associated functional unit.

3. A computer processor according to claim 1, wherein:

a tag valid signal of a particular result tag generated
dynamically according to the number of result operands
is based upon a corresponding result operand being
determined by an operation.

4. A computer processor according to claim 1, wherein:

a tag valid signal of a particular result tag generated
dynamically according to the number of result operands
is based upon position of an operation within an
instruction.

5. A computer processor according to claim 1, wherein:

a tag valid signal of a particular result tag generated
dynamically according to the number of result operands
is based upon an overflow condition.

6. A computer processor according to claim 1, wherein:

the result tags generated dynamically according to the
number of result operands are generated by increment-
ing result tag values in accordance with a number of
result operands generated in the current machine cycle.

7. A computer processor according to claim 1, wherein:

the result tags generated dynamically according to the
number of result operands are generated by an incre-
mentor circuit that is incremented by a number of result
operands generated in each machine cycle to provide an
initial value for operand result tags in a subsequent
machine cycle.

8. A computer processor according to claim 1, wherein:

the result tags generated dynamically according to the
number of result operands each have a value con-
strained by a maximum tag value.

9. A computer processor according to claim 1, wherein:

the result tags generated dynamically according to the
number of result operands are based on an ordering of
operations that produce the result operands in the given
machine cycle.

10. A computer processor according to claim 1, wherein:

the result tags generated dynamically according to the
number of result operands are based on latency of
operations that produce the result operands in the given
machine cycle.

