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1
COMPUTER PROCESSOR EMPLOYING
INSTRUCTION BLOCK EXIT PREDICTION

BACKGROUND

1. Field

The present disclosure relates to computer processors.

2. Related Art

Modern computer processors (also known as central pro-
cessing units or CPUs) employ branch prediction and a
pipelined instruction fetch process so as to be able to feed a
new decoded instruction (or several, depending on the
architecture) into issue every cycle. The instruction fetch
pipeline can be lengthy. The penalty for misprediction of a
branch operation can take many cycles as the instruction
fetch pipeline needs to be flushed and filled with instructions
starting from the point of the mispredicted branch operation.
This penalty would be prohibitive if it was imposed on every
conditional branch operation, hence the need for efficient
branch prediction.

It is relatively easy to know the next instruction in
advance of execution when instructions are issued in con-
secutive sequence. In architectures with fixed-length instruc-
tions, the location of the Nth next instruction is N instruction
widths ahead of the location of the current instruction. The
relation is not so direct with variable-length instructions. In
practice, instruction fetch pipelines have little trouble with
consecutive instructions.

Unfortunately, actual program instructions are not always
consecutive. Except for certain highly specialized kinds of
programs, most programs are replete with branch operations
(or subroutine call operations and corresponding return
operations) that transfers control away from the linear
sequence of instructions that can be efficiently pipelined.
After some fetching of instructions from one run of con-
secutive addresses, the transfer starts fetching from a dif-
ferent run of addresses. However, to do so without a hiccup,
the instruction fetch pipeline must know where the new run
will be and at which cycle in the future it starts.

That time-and-place information is in the encoding of the
operations that redirect control flow and the data operands
that they have as arguments. However, the ordinary flow of
execution will not examine these transfer operations until
they issue, and by then it is too late (by the amount of the
pipeline delay) to redirect the instruction fetch pipeline to
the new run. Hence, each operation that actually transfers
adds a whole pipeline delay to execution.

There are several established ways to avoid this problem,
but the most important is branch prediction. This approach
builds on the execution behavior for a given conditional
branch operation. There are innumerable branch prediction
schemes, many of them subtle and complex. However, they
all seek to predict what instruction will execute next after a
conditional branch operation. All branch prediction schemes
are vulnerable to making incorrect predictions. If the pre-
diction is wrong (a mispredict), then the instruction fetch
pipeline is full of instructions from the incorrect execution
path. In this case, such instructions are discarded and the
instructions from the correct execution path are fetched and
decoded after a full pipeline delay. If, for example, the
branch prediction scheme is correct 90% of the time and
conditional branch operations are 20% of the total (a com-
mon figure for general code), then there will be one mis-
predict on average every 50 instructions. If, for example, the
pipeline delay is 30 cycles, then nearly 40% of the CPU
cycles are wasted recovering from mispredictions.
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The various branch prediction strategies commonly used
by or proposed for CPUs employ hardware-based tables that
retain the history of the CPU’s prior experience with branch
operations. Exactly what this history information comprises,
and how it is used to decide on a prediction, varies by
strategy. A conventional predictor keeps a table entry for
each branch operation that it may execute. Commonly the
information is organized as a hardware-based hash table
indexed by the memory address of the branch instruction.
The instruction pipeline, on recognizing a branch operation,
hashes the address of the branch operation to generate a table
index and then looks for a table entry that predicts whether
the branch operation will be taken or not. For dynamic
branch operations (ones where the target is computed at run
time) the tables may also contain the target address of the
branch operation, or at least what its target was the last time
it was executed.

All of the branch prediction strategies benefit from keep-
ing more information, either to have more history about a
particular branch instruction, or to be able to keep history
about more branch instructions. Unfortunately, increasing
the size of the hardware-based hash table costs in die area
and execution delays.

Branch prediction schemes also typically predict flow
control operations via conditional call and return operations.
Programs are commonly divided into separate units of
program code referred to as subroutines or functions or
procedures. The unit of program code can be activated and
executed to perform its behavior by a programmatic device
known as a call operation. The call operation identifies the
unit of program code that is to be activated, and then pauses
the currently running unit of program code until the execu-
tion of the called unit of program code is complete by the
execution of a return operation that returns the control flow
of the program to the point of call operation. Then the
portion of the program code that made the call operation
resumes its execution at the point of the call operation. The
execution of the called unit of program code can include call
operations (nested calls). A unit of code that does not call
any other unit of code is said to be a leaf function. The unit
of code that is the beginning of the whole program, implic-
itly called by the operating system, is the root function or
main. Branch operations, call operations and return opera-
tions can be unconditional in nature where the transfer of
control is not dependent on any conditions. Thus the transfer
by the operation always happens. Branch operations, call
operations and return operations can be conditional in nature
where the transfer of control is dependent on a condition
(predicate). If the condition is evaluated to be true, then the
transfer by the operation happens. If the condition is evalu-
ated to be false, then the transfer by the operation does not
happen.

SUMMARY

A computer processor is provided that executes sequences
of instructions stored in memory. The sequences of instruc-
tions are organized as one or more instruction blocks each
having an entry point and at least one exit point (possibly
multiple exit points) offset from the entry point. An appa-
ratus for predicting control flow through sequences of
instructions includes a table storing a plurality of entries
each associated with an instruction block or part thereof. At
least one entry of the table corresponding to a given instruc-
tion block or part thereof includes a predictor corresponding
to a predicted execution path that exits the given instruction
block or part thereof. The table is queried in order to
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generate a chain of predictors corresponding to a sequence
of instruction blocks or parts thereof that is predicted to be
executed by the computer processor.

The at least one entry corresponding to the given instruc-
tion block or part thereof can include an address field that
points to a target instruction block or part thereof. The
address field can represent an offset address relative to a base
address.

The at least one entry corresponding to the given instruc-
tion block or part thereof can further include information
that represents the extent of the instructions of the given
instruction block or part thereof that are predicted to be
executed as stored in memory, such as a cache line count
value and an instruction count value. The cache line count
value can represent the number of cache lines of the given
instruction block or part thereof as stored in memory, and the
instruction count value can represent the number of instruc-
tions in the last cache line of the given instruction block or
part thereof as stored in memory.

The at least one entry corresponding to the given instruc-
tion block or part thereof can further include information
that is used to control prefetching of cache lines of the given
instruction block or part thereof into cache that is logically
part of the memory that stores the sequence of instructions,
or hoist such cache lines within the cache.

The at least one entry corresponding to the given instruc-
tion block or part thereof can further include information
that is used to control fetching of cache lines of the given
instruction block or part thereof into an instruction buffer.

The at least one entry corresponding to the given instruc-
tion block or part thereof can further include information
that is used to control decoding of the instructions of the
given instruction block or part thereof. For example, such
information can be used to obtain cache lines of the given
instruction block or part thereof from an instruction buffer
for decode processing and/or to control isolation of instruc-
tions from the cache lines of the given instruction block or
part thereof for instruction decode processing.

The at least one entry corresponding to the given instruc-
tion block or part thereof can further include metadata
corresponding to the predictor, wherein the metadata is
selected from the group consisting of:

an indicator of the expected kind of control transfer

operation to the target instruction block or part thereof,

a count of the number of untaken conditional call opera-

tions contained by the corresponding instruction block
or part thereof,

a number of key check bits for detecting hashing colli-

sions,

information about the quality of the prediction defined by

the predictor, and

loop information for the corresponding instruction block

or part thereof.

In one embodiment, the apparatus further includes an exit
cache that stores predictors output from the table. Further-
more, a prefetcher can be configured to process predictors
output from the table in order to prefetch cache lines of
instruction blocks or parts thereof that correspond to the
predictors output from the table, where the prefetched cache
lines are staged into cache that is logically part of the
memory that stores the sequence of instructions, or hoisted
within the cache. A queue can be configured to store a set of
predictors output from the exit cache. A fetcher can be
configured to process the set of predictors stored in the
queue in order to fetch cache lines of instruction blocks or
parts thereof that correspond to the processed predictors into
an instruction buffer. Decode control logic can be configured
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to process the set of predictors stored in the queue in order
to control decoding of instructions of instruction blocks or
parts thereof that correspond to the processed predictors.

In one embodiment, the computer processor includes an
instruction shifter that obtains cache lines from an instruc-
tion buffer and isolates instructions from such cache lines.
The decode control logic can be configured to process a
given predictor at the head of the queue in order to control
operation of the instruction shifter to obtain at least one
cache line that contains one or more instructions of the
instruction block or part thereof that corresponds to the
given predictor. The decode control logic can also be con-
figured to process the given predictor in order to control
operation of the instruction shifter to isolate each instruction
of the instruction block or part thereof that corresponds to
the given predictor.

The apparatus can include mispredict logic that processes
information related to execution behavior of the computer
processor in order to detect a mispredict in the chain of
predictors and start a new chain of predictors that initially
follows the actual execution path of such execution behav-
ior. The mispredict logic can be configured to update the
predictor entries stored in the table based on the execution
behavior of the computer processor.

The apparatus can further include a mechanism that stores
predictor entries for a program and is configured to load such
predictor entries into the table during execution of the
program. The mechanism can be configured to load into the
table predictor entries corresponding to a particular function
in the event that computer processor experiences a taken
mispredict with respect to a call operation to the particular
function and the table does not include any predictor entries
for the particular function. The mechanism can be further
configured to update the predictor entries stored for the
program in persistent storage for access the next time that
the program is run.

The instruction blocks an include call operations and
return operations. The instruction blocks can be partitioned
into fragments, where each fragment begins with either the
entry point of the instruction block or the return point from
a call operation, and ends with either a call operation or a
conditional or unconditional exit from the instruction block.
Successive fragments of a given instruction block can be
associated with keys that are arithmetically derivable from
the key of the previous fragment.

At least one entry of the table can store an alternate key
predictor corresponding to an execution path that does not
exit a given instruction block or part thereof and corresponds
to a misprediction of one other entry stored in the table. The
alternate key predictor can be associated with an alternate
key that is arithmetically derivable from the key associated
with the one other entry.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 and 2 are schematic diagrams of an extended
basic block of instructions or EBB according to the present
disclosure.

FIG. 3 is a schematic diagram illustrating the control flow
of an illustrative program through a sequence of four EBBs.

FIG. 4 is a schematic diagram of an illustrative EBB and
corresponding predictor entry according to the present dis-
closure.

FIG. 5 is a schematic diagram of an exemplary embodi-
ment of an Exit Table predictor entry according to the
present disclosure.
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FIG. 6 is a schematic block diagram of a computer
processing system according to an embodiment of the pres-
ent disclosure.

FIG. 7 is a schematic diagram of exemplary pipeline of
processing stages that can be embodiment by the computer
processor of FIG. 6.

FIG. 8 is a schematic diagram illustrating an embodiment
of the prediction logic of the computer processor of FIG. 6.

FIG. 9 is a flow chart illustrating exemplary operations
carried out by the Exit Cache of FIG. 8 in generating chains
of predictor entries for the control flow of an executing
program according to the present disclosure.

FIG. 10 is a flow chart illustrating exemplary operations
carried out by the Exit Table of FIG. 8 in generating chains
of predictor entries for the control flow of an executing
program according to the present disclosure.

FIG. 11 is a schematic diagram of a program load module
that supports the bulk load of predictors in accordance with
the present disclosure.

FIG. 12 is a schematic diagram of an exemplary EBB
employing two split-instruction streams according to the
present disclosure.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Tlustrative embodiments of the disclosed subject matter
of the application are described below. In the interest of
clarity, not all features of an actual implementation are
described in this specification. It will of course be appreci-
ated that in the development of any such actual embodiment,
numerous implementation-specific decisions must be made
to achieve the developer’s specific goals, such as compli-
ance with system-related and business-related constraints,
which will vary from one implementation to another. More-
over, it will be appreciated that such a development effort
might be complex and time-consuming but would neverthe-
less be a routine undertaking for those of ordinary skill in the
art having the benefit of this disclosure.

As used herein, the term “operation” is a unit of execu-
tion, such as an individual add, load, store or branch
operation.

The term “instruction” is a unit of logical encoding
including zero or more operations. For the case where an
instruction includes multiple operations, the multiple opera-
tions are semantically performed together.

The term “memory system” or “memory hierarchy” is a
computer memory system storing instructions and operand
data for access by a computer processor in executing a
program. The memory system or memory hierarchy can be
organized in a hierarchical arrangement of levels of memory
with increasing access latency from the top level of memory
closest to the computer processor to the bottom level of
memory furthest away from the computer processor.

The term “cache line” is a unit of memory that is accessed
by a computer processor. The cache line includes a number
of'bytes (typically 32 to 128 bytes) that are aligned on cache
line boundaries.

The computer processor of the present application
executes sequences of instructions organized as blocks of
instructions (or “instruction blocks™). The instruction blocks
can be extended basic blocks or “EBBs.” Each given EBB
is a sequence of instructions with a single entry point (the
head of the EBB) and possibly one or several control transfer
operations forming exit points as shown in FIG. 1. FIG. 2
shows an example of an EBB with a sequence of four
instructions with an instruction order that logically extends
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in a direction of increasing memory address space relative to
the entry point of the EBB. Control transfer operations in an
EBB always transfer control to the head of some other EBB
(or to the head of the same EBB, in the case of a single EBB
loop) as shown in FIG. 3. The control transfer operations of
the EBB do not transfer control into the middle of an EBB.

The control transfer operations of the EBB can be con-
ditional control transfer operations, such as a conditional
branch operation, conditional call operation or conditional
return operation. The control transfer operations of the EBB
can also be unconditional control transfer operations, such
as an unconditional branch operation or jump operation,
unconditional call operation or unconditional return opera-
tion. In this manner, the EBB is different from conventional
program code that executes on other computer processors
which do not have such restriction, where such instructions
can typically be entered either because they are the target of
a transfer, or because the previous instruction in sequence
has been issued and control has fallen through, or both.

Necessarily from the definition of an EBB, the EBB
includes at least one explicit control transfer operation and
control never implicitly falls through the end of the EBB into
the next EBB. Furthermore, the last instruction of the EBB
can include an unconditional control transfer operation.
Alternatively, the last instruction of the EBB can include
balancing conditional control transfer operations that trans-
fer control to one or more EBBs for all possible conditions
specified by the last instruction of the EBB.

An EBB can also include one or more embedded call
operations and associated return operations. The call and/or
return operations can be conditional in nature or uncondi-
tional in nature. The semantics of the call operation and the
return operation as defined by the Instruction Set Architec-
ture of the computer processor can distinguish call and
return operations from one another and from branch type
operations and possibly other control transfer operations.
The call operation can cause a break in the sequence of
consecutive execution within the EBB. Thus, the execution
of the call operation can be predicted similar to a branch or
jump operation. Because an EBB may contain several call
operations, executing an EBB can involve one or more
sequences of instructions broken by calls leading to an exit
point from the EBB. The exit point of the EBB can be a
conditional branch operation, an unconditional branch or
jump operation (which can be the last instruction of the
EBB), a conditional or unconditional call operation, and/or
a conditional or unconditional return operation. These
sequences are referred to herein as EBB fragments. Note that
if control enters an EBB then necessarily only one condi-
tional branch operation (or one return operation) of the EBB
will ever be taken to cause the program to exit from the
EBB, although there may be many call operations in an EBB
that causes the program to transfer control out of the EBB.

The computer processor also includes Prediction Logic
that employs an Exit Table whose entries store predictors
corresponding to EBB fragments that are executing on the
computer processor. Each given Exit Table entry is associ-
ated with a key by which the given Exit Table entry may be
accessed (looked up). The predictor corresponding to a
given EBB fragment can include information that represents
a predicted execution path that exits the given EBB frag-
ment. In the case that the given EBB fragment is predicted
to be exited by a branch operation, the predictor entry
corresponding to the given EBB fragment is referred to
herein as a branch-type predictor entry. In the case that the
given EBB fragment is predicted to be exited by a call
operation, the predictor entry corresponding to the given
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EBB fragment is referred to herein as a call-type predictor
entry. In the case that the given EBB fragment is predicted
to be exited by a return operation, the predictor entry
corresponding to the given EBB fragment is referred to
herein as a return-type predictor entry. The predictor for
each given Exit Table entry can include an address field. For
both branch-type and call-type predictor entries, the address
field of the given Exit Table predictor entry represents the
entry address of the target EBB (the EBB that is the target
of the branch operation or the call operation). In this case,
the address field of the Exit Table entry can be a logical
offset of the entry address of the target EBB relative to a base
address stored in a special purpose register of the computer
processor or by an offset from the entry address of the
exiting EBB corresponding to the predictor. For return-type
predictor entries, the address field of the given Exit Table
predictor entry is not an address but can contain information
needed to continue the predictor chain at the point of the call
operation in the subroutine being returned to. The address
field of the given Exit Table entry can be used to derive the
key to look up and access the Exit Table entry corresponding
to the target EBB fragment. The predictor for each given
Exit Table entry can also include information that represents
the extent of the instructions of the corresponding EBB
fragment that are predicted to be executed as stored in the
memory system as well as other metadata as described
herein. Note that the predictor for each given Exit Table
entry can provide information that allows the decoding of
the instructions of the EBB fragment corresponding to the
given Exit Table entry.

The Prediction Logic of the computer processor is con-
figured to access the Exit Table (and possibly an Exit Cache
associated therewith) to generate and store a chain of pre-
dictors that refer to consecutive EBB fragments of the
program to be executed by the computer processor. The
chain of predictors is generated and stored ahead of the
decode stage of the processor (a form of run-ahead predic-
tion). The chain of predictors can be used for four primary
purposes:

i) to control prefetch operations that prefetch into cache
the cache lines that include the instructions of the EBB
fragments as referred to by the chain of predictors;

ii) to control fetch operations that fetch such cache lines
from cache into an instruction buffer or queue that feeds
to the decode stage of the computer processor; and

iii) to control read-out operations that read-out the
sequence of instructions of the EBB fragments as
referred to by the chain of predictors from the instruc-
tion buffer to the decode stage of the computer proces-
sor for decoding and follow-on execution; and

iv) to control shifting operations that operate on cache
lines to isolate each instruction of the EBB fragments
as referred to by the chain of predictors for decoding
and follow-on execution.

In generating the chain of the predictors, the address field
of'a predictor as part of an entry read-out from the Exit Table
can be used to generate a key to look up and access the next
predictor in the chain. The predictor information that rep-
resents the extent of the sequential instructions of a given
EBB fragment for the chain of predictors can be used to
control the prefetching, fetching, instruction buffer read-out,
and instruction-shifting operations for the instructions of the
given EBB fragment.

In one embodiment, the predictor information that repre-
sents the extent of the instructions of the EBB fragment that
are predicted to be executed as stored in the memory system
includes a cache line count field and an instruction count
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field as shown in FIG. 4. The cache line count field indicates
the number of cache lines of the memory system that store
the sequence of sequential instructions of the EBB fragment.
The instruction count field indicates the number of instruc-
tions of the EBB fragment that are found in the last cache
line of the EBB fragment. The cache line count field of a
given predictor can be used in conjunction with the address
of the EBB fragment to control the prefetching and fetching
operations of cache lines that include the instructions of the
EBB fragment. The instruction count field of the predictor
can be used to control the read-out of the sequence of
instructions of the EBB fragment from the Instruction Buffer
to the decode stage as well as the instruction shifting that
isolates instructions of the EBB fragment for further decode
processing. Specifically, the instruction count field of the
predictor can provide an indication of the number of instruc-
tions in the last cache line of the EBB fragment that are to
read-out and isolated for decoding by the decode stage of the
computer processor. Thus together the cache line count and
instruction count can inform the decode stage when it has
reached the end of the EBB fragment.

As described above, an EBB can contain many condi-
tional branch-type control transfer operations that can pos-
sibly exit the EBB. However, only one of these conditional
branch-type control transfer operations per EBB can be
predicted taken by a corresponding entry in the Exit Table.
Furthermore, in practice, the average number of conditional
branch-type control transfer operations per EBB can vary by
program and somewhat by compilation strategy, but a typi-
cal number is three. Consequently, for the same amount of
program code, a conventional per-branch predictor requires
three times as many total table entries as the prediction
approach utilizing an Exit Table as described herein. This
reduction in total table entries can provide i) a reduction in
the area and power costs of prediction, ii) an increase in
prediction accuracy due to keeping more information about
each entry or more entries, and/or iii) lower latency in
prediction.

Also note that the Exit Table can be configured such that
entries of the Exit Table do not store predictions for never-
taken conditional branch-type control transfer operations. In
this case, control falls through to a later exit, which can be
associated with a prediction stored as an entry in the Exit
Table.

Furthermore, the control flow of the program can be
organized such that the entries of the Exit Table correspond-
ing to always-taken (or highly-taken) branch-type control
transfer operations are minimized. Sometimes a compiler
knows, by heuristics, profiling or other methods, that one
direction of control flow of a particular branch-type control
transfer operations is more likely than the other. In such a
case, the compiler can use de Morgan’s laws or other
transformations to exchange the sense of test for the branch-
type control transfer operation such that the most likely
direction of control transfer becomes the fall-through case,
and the taken path become the less likely case. This results
in program code with longer average executions in a given
EBB fragment before exit, fewer predictions to maintain,
and better utilization of the Exit Table and associated
hardware.

Furthermore, the Exit Table can possibly be configured to
omit any entries corresponding to unconditional branch-type
operations that have statically knowable target addresses. In
this case, the CPU can be configured to isolate and interpret
the unconditional branch operation that will cause the exit
from the EBB such that the decode stage receives the target
EBB of the unconditional branch instruction with minimal
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delay. This approach can be difficult when used in conjunc-
tion with in-order issuance with a short decode pipeline.
EBB Fragments

As described herein, EBBs are linear segments of pro-
gram code with a single entry point (entry address) and one
or more possible exit points. One or more predictions
corresponding to a given EBB can be stored as entries in the
Exit Table. Each such prediction includes an address field,
which can be used to obtain the entry address of the
predicted next EBB in the program code. Moreover, EBBs
can include one or more embedded call operations. Such a
call operation can transfer control to another EBB (the first
EBB of the called subroutine). The call operation can be
conditional in nature (executed when certain condition(s) are
satisfied similar to a conditional branch operation) or can be
unconditional in nature (always executed similar to an
unconditional branch or jump operation). The Exit Table can
include an entry storing a predictor for each unconditional
call operation in an EBB. The Exit Table can also include an
entry storing a predictor for each conditional call operation
in an EBB. In each case, the address field of the predictor can
be used to obtain the entry address of the first EBB of the
called subroutine.

Note that the final EBB (and possibly other EBBs) of the
called subroutine will include a return operation that is
intended to transfer control to the point of the call operation
in the EBB of the program code being returned to. The Exit
Table can include an entry storing a predictor for such return
operation. This Exit Table entry can be used to link to
another Exit Table entry that corresponds to the point of the
call in the EBB of the program code being returned to. This
Exit Table entry (corresponding to the point of the call in the
EBB of the program code being returned to) can include a
predictor for another call operation, another return operation
(as part of nested Call program structure), a conditional
branch operation, or an unconditional branch operation
(such as a final exit of the EBB). For the case where the
predictor refers to a second call operation, the Exit Table can
include an additional entry that follows the return control
flow from the called subroutine to the point of the second
call in the EBB of the program code being returned. This
structure can be repeated for additional call/return opera-
tions when present.

In this manner, the EBB can be partitioned into EBB
fragments, where each EBB fragment begins with either the
entry point of the EBB or the return point from a call
operation, and ends with either a call operation or a condi-
tional or unconditional exit from the EBB. Note that an EBB
may include a single EBB fragment. The Exit Table can
potentially store an entry with a predictor for each EBB
fragment.

The key used to look up the initial EBB fragment of an
EBB can correspond to the entry address of the EBB as
described herein. The key used to look up subsequent EBB
fragments of the EBB (such EBB fragments corresponding
to the return point of a call operation) could possibly
correspond to the address of the return point of the call
operation. However, these return addresses can be ambigu-
ous in certain instances (such as in the presence of vacan-
cies). Thus, in one embodiment, a mathematical model is
used to generate the keys used to look up EBB fragments
that correspond to the return point of respective call opera-
tions. Many different mathematical models are possible. It is
desirable that the mathematical model guarantees that the
key of any such EBB fragment is distinct from all other keys.
An example of a suitable mathematical model involves
subtracting two from the key of the previous EBB fragment
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to obtain the key of the next subsequent EBB fragment. This
algorithm guarantees uniqueness because for there to be
such an EBB fragment there must have been a call operation
encoded in the EBB. Furthermore, in this example, the call
operations are located at decreasing addresses from the entry
point of the EBB, and necessarily occupy more than two
bytes of code. Hence, the “previous key minus 2” model
generates a new key that points to address space that lies
within the code of the EBB and cannot collide with the entry
address of an adjacent EBB in memory.
Exemplary Format of the Predictors

As described above, the Exit Table stores entries that
define predictors corresponding to the EBB fragments of a
program that is to be executed by the computer processor.
Each given Exit Table entry is associated with a key by
which the given Exit Table entry may be accessed (looked
up). In one exemplary embodiment, each predictor can
include at least one of the following fields as show in FIG.
5:

1) an address field that points to entry address of the target
EBB for branch and call-type predictors (or informa-
tion that refers to the point of the call in the target EBB
for a return-type predictor); furthermore, the memory
address of the first cache line of target EBB fragment
target can be derived from the address field of the Exit
Table entry;

2) a Cache Line Count value that specifies the extent (in
number of Cache Lines) of the corresponding EBB
fragment in memory;

3) an Instruction Count value that specifies the number of
instructions in the last cache line of corresponding EBB
fragment; this specifies the number of instructions to be
decoded in the last cache line before transfer out of the
corresponding EBB fragment to the target EBB frag-
ment as pointed to by the address field of the Exit Table
entry;

4) an indicator of the expected kind of control transfer
operation out of the corresponding EBB fragment to the
target EBB fragment for the predictor; for example, the
indicator can specify one of a branch operation, a call
operation or a return operation;

5) a count of the number of untaken conditional call
operations that the EBB fragment contains;

6) a number of key check bits that can be used to detect
hashing collisions when accessing the Exit Table;

7) information about the quality of the prediction defined
by the predictor, such as an estimate of how likely the
predictor is to be correct; and

8) loop information for the target EBB fragment, includ-
ing a head of loop marking and a loop iteration count,
which is a predicted iteration count for EBBs that are
the head of loops.

The meaning and purpose of each of these fields is discussed
below.
Predictor Address Field

The address field of the predictor points or refers to
another Exit Table entry corresponding to a target EBB
fragment. This reference can be embodied by the memory
address of the target EBB fragment, or its logical offset from
some well-defined base address such as the beginning
address of the code in the load module being executed.
Unfortunately, memory addresses are large and it is very
desirable to keep prediction data small to economize on
hardware for tables. Alternatively, the reference can be
embodied by an offset from the entry address of the exiting
EBB corresponding to the predictor. This self-relative offset
permits code to be located anywhere in memory without
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requiring relocation of prediction target addresses. In addi-
tion, the compiler or other code generator can sort the EBBs
of the program using a topological sort, which has the effect
of placing the target EBB fragment close to the exiting EBB
in memory. This sort lowers the average offset when using
self-relative offsets, which means that larger programs will
overflow the fixed size of the predictor address field less
often, permitting smaller address fields (and fewer hardware
bits) in the Exit Table. Note that when overflow does occur
anyway, the address field of the predictor can be to its
maximal value, and the predictor logic can ignore the
address field information while still using the rest of the
predictor, if possible.

As described herein, the computer processor includes
hardware circuitry (Predictor Logic) that accesses the Exit
Table to generate and store a chain of predictors that refer to
consecutive EBB fragments of the program to be executed
by the computer processor. The chain of predictors is
generated and stored ahead of the Decode Stage (a form of
run-ahead prediction). In generating the chain of the pre-
dictors, the address field of a predictor as read from the Exit
Table can be used to generate to a key that is used to look
up and access the next predictor in the chain.

Predictors corresponding to call and branch operations
reflect a transfer to the initial EBB fragment (entry address)
of some target EBB, and so the address field of such
predictors refers to another Exit Table entry corresponding
the initial EBB fragment of the target EBB. Predictors
corresponding to return operations reflect a transfer to the
return point of a call operation. This return point does not
correspond to an initial EBB fragment as the corresponding
call operation ended the initial fragment if it occurred there.
Thus, the transfer is to some fragment in the EBB of the call
operation being returned to. In this case, the key for the EBB
fragment of the call operation being returned to can be
provided by access to the top most entry of the Return Stack
as described herein. Alternatively, the top most entry of the
Return Stack can supply the entry address of the caller EBB
address and an untaken call-count. These two values can be
used to derive the key for the EBB fragment of the call
operation being returned to be used to. Note that this return
key may need to be transformed into an actual address in
order to perform prefetching and fetching operations with
respect to the EBB fragment being returned to. Such key-
to-address transformation is described below in more detail.
The top most entry of the Return Stack can also supply the
return address of the return operation such that the key-to-
address transformation can be avoided.

Predictor Cache Line Count

As described herein in the illustrative computer processor,
instructions are fetched from cache of a hierarchical memory
system and stored in an Instruction Buffer. The Decode
Stage is fed instructions out of the Instruction Buffer. In
typical caches, the contents are kept as an array whose
elements are of a fixed granularity called the cache line. A
typical cache line size is 64 bytes. These cache lines need
have no relations to instruction boundaries. Thus, a single
instruction can cross one or more cache line boundaries
depending on the size of the instruction. When an EBB
fragment is executed, it will require instructions from some
number of cache lines before it exits (or is predicted to exit)
and will not require subsequent cache lines containing
instructions beyond this exit point (even if the EBB exits
well before the predicted exit point). It is advantageous that
the requisite cache lines are accessible in the cache. This
allows the Decode Stage to process the sequence of instruc-
tions of the EBB fragment at full speed.
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The computer processor can employ a Prefetcher (e.g., a
hardware unit) that is configured to use the address field and
the predictor cache line count value for the chain of predic-
tors read from the Exit Table in order to prefetch into cache
the cache lines that include the instructions of the EBB
fragments as referred to by the chain of predictors. More
specifically, the address field of a given predictor is used to
derive the memory address for the starting cache line of a
corresponding EBB fragment. The Prefetcher uses the
memory address for the starting cache line of the corre-
sponding EBB fragment to fetch such starting cache line into
cache (if not already in cache). The Prefetcher can then
apply offsets to the base memory address of the starting
cache line such that the Prefetcher fetches the additional
cache lines of the corresponding EBB fragment into cache
(if not already in cache), where the number of additional
cache lines and corresponding offsets are dictated by the line
count value of the given predictor. Note that the prefetch
operations are carried out over an exact number of cache
lines that are part of the EBB fragment. This is an exact
prefetch as the exact number of needed cache lines will be
loaded into cache if not already in cache.

Such exact prefetch operations are different from blind
prefetch operations commonly employed by computer pro-
cessors in an attempt to bring needed cache lines into the
cache before they are decoded and subsequently executed. In
the blind prefetch strategy, if control is transferred to some
memory address and the target line is not in cache, the
computer processor will not only load the target cache line
from main memory into cache but will also load several
additional cache lines (after the target cache line) from main
memory into cache in case the additional cache lines might
be needed. The exact prefetch operations can avoid wasting
cache space on cache lines that are loaded speculatively and
not used as a result of the blind prefetch strategy.

The cache line count field of the predictor can have a
predefined fixed size, and the size of the EBB fragment
referred to by the cache line count field might be too big to
fit in the fixed size of the cache line count field. In such a
case, a saturated value (i.e., the largest value the cache line
count field can hold) can be used for the cache line count
field for the predictor, which serves to indicate an overtlow
condition to the computer processor. This overflow condi-
tion can be addressed as follows.

The cache line count for the overflowing EBB fragment
can be derived from the overall length in cache lines of the
whole EBB, i.e. the overflow predicts that exit will be from
the final cache line of the EBB. The overall length in cache
lines of the whole EBB can possibly be derived from
metadata located at the entry point of the EBB and possibly
incremented by explicit operations contained in the executed
instruction stream. Thus the overflowed count is a pessimis-
tic estimate. Unless the EBB is executed all the way to the
end before exiting, the actual exit will find that some
unneeded cache lines have been fetched and some unneeded
instructions have been decoded. These are discarded, and the
Decode Stage resumes at the actual target of the overflowing
EBB fragment.

Predictor Instruction Count

The Decode Stage of the Processor can operate at full
speed (and optimal efficiency) when instructions flow to the
Decode Stage as a continuous stream, without pauses at
transfers between EBB fragments. That is, when the Decode
Stage is working on the last instruction before the predicted
exit of an EBB fragment, the next instruction that is to be
decoded as stored in the Instruction Buffer should be the first
instruction of the next EBB fragment. In this case, the
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Decode Stage needs to know not only the target address of
the next instruction (where the next instruction will be
found) but also which instruction is the one that will perform
the exit from the current EBB fragment.

There are several possible ways to convey the “exit is
here” information. For example, the predictor entry can
possibly contain a count of the number of instructions to
decode between entry and exit of the EBB fragment. Or the
predictor can possibly contain the address or offset of the
exiting instruction. Or on a statically scheduled machine the
predictor can possibly contain a count of the number of
cycles spent in the EBB fragment. This might appear to be
the same as the number of instructions executed in the EBB.
The limitation with all of these indicators is that they are
large, and space in the Exit Table is at a premium. However,
the indicator can be compressed by noting that necessarily
the exit will be from some instruction that ends in the last
predicted line. Consequently, the exit can be takes as an
instruction count from the point at which the final cache line
of the respective EBB fragment enters decode, rather than
from the start of the respective EBB fragment. Conse-
quently, the instruction count field of the predictor cannot be
larger than the maximum number of instructions that can be
encoded in a single cache line. In practice, the size of the
instruction count field of the predictor can be made large
enough to express nearly all instruction counts that appear in
average code.

The instruction count field of the predictor can have a
predefined fixed size, and a run of very short instructions
might require an instruction count that exceeds the fixed size
of the instruction count field. In such a case, a saturated
value (i.e., the largest value the instruction count field can
hold) can be used for the instruction count field for the
predictor, which serves to indicate an overflow condition to
the computer processor. This overflow condition can be
addressed as follows.

The overflow of the instruction count causes the Decode
Stage to continue with decode past the overflowed count,
and to switch to the next EBB fragment when the next
instruction to be decoded would require another cache line.
This may be (luckily) the correct exit instruction. The
chance that it is correct is equal to the ratio of average
instruction size to cache line size. In the absence of luck, the
Decode Stage will have shifted more instructions than
needed and the decoder will discover the mispredict when
the exiting operation is executed. Assuming that the next
EBB fragment was correct and only the count was wrong,
the target instruction and the following instruction chain is
somewhere up the decode pipeline and all that needs to be
done is to discard the uselessly decoded instructions
between the exiting instruction and its target instruction,
which is cheaper than a full mispredict in which the predic-
tion has the wrong target address as well as wrong counts.
Predictor Kind Indicator

The predictor can include an indicator of the expected
kind of control transfer operation out of the corresponding
EBB fragment to the target EBB fragment for the predictor.
The categories of kind indicators can depend on the details
of the instruction formats and decode process. In one illus-
trative example, the categories of kind indicators include a
“branch” kind for conditional branch operations, a “jump”
kind for unconditional branch operations, a “return” kind for
return operations, an “inner-call” kind for call operations
that will return to the instruction containing the call (an inner
call), and an “outer-call” kind for call operations that will
return to the following instruction (an outer call). Many
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aspects of prediction vary slightly based on the kind of
transfer being predicted, as described elsewhere where the
difference arise.

Predictor Untaken Call Count

As described herein, the key for the initial EBB fragment
of'an EBB corresponds to the entry address of the EBB, and
the key for successive EBB fragments (that follow the initial
EBB fragment) in the EBB can be defined by a mathematical
model by subtracting two from the key of the previous EBB
fragment. Each EBB fragment but the last can end with a call
operation, so the key of such EBB fragments can be derived
from the entry point address minus twice the number of call
operations encoded between the entry point and the frag-
ment whose key is being determined. The count of call
operations executed in an EBB can be maintained by the
computer processor. In the case that the computer processor
supports both unconditional and conditional calls, the math-
ematical model for defining keys for call operations needs to
adjust the entry address by the count of both encoded
conditional and unconditional call operations, not the count
of executed calls. Note that the two counts may differ if the
EBB contains untaken conditional call operations.

Operation execution can maintain an accurate count of
call operations as of execution. However, prediction chain-
ing requires keys as of prediction, i.e. as of isolation of
instructions for decoding. This count may differ from the
execution count if there are untaken calls that are being
decoded but have not yet reached execution.

To avoid untaken calls causing wrong keys, the predictor
entries include an untaken call count field. A call operation
count for an EBB can be found by adding the count of
predicted-taken call operations for the EBB fragments of the
EBB (i.e., the number of “call” kind predictions in the chain
of predictor entries for the EBB fragments of the EBB) to the
cumulative untaken call counts for the EBB fragments of the
EBB (i.e., the cumulative value of the untaken conditional
call count values in the chain of predictor entries for the
EBB fragments of the EBB). The call operation count can be
derived as follows. The predictor for each EBB fragment
includes an untaken call count value for that EBB fragment,
which exits by a predicted taken call operation. If the
predictor(s) for the EBB are correct, then the sum of the
number of EBB fragments back to the beginning of the EBB
(the number of predictions in the chain) plus the sum of all
the untaken call count values for this number of EBB
fragments will be the number of call operations (both taken
and untaken) in the program since the original entry into the
EBB. This is the call operation count and it can be main-
tained by the Decode Control Logic. In this case, the next
key for the Exit Table entry that predicts the next EBB
fragment is the entry key of the EBB (which can be stored
upon entry) less the product of two times the call operation
count.

If there is a misprediction then the call operation count in
the failing key is also incorrect. However, the execution
logic can be configured to keep a count of executed (not
necessarily taken) call operations, which can be used to
compute the correct key for the Exit Table entry that predicts
the next EBB fragment.

Predictor Key Check Bits

As described herein, the Exit Table is a repository in
which entries that define predictors are stored and accessed
by a key look up operation. In one embodiment, the Exit
Table can be implemented as a hardware-based direct-
mapped hash table for which the key is an EBB address
modified as described later. However many other implemen-
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tations could be used without altering the function of the
Exit Table as described herein.

When the Exit Table is implemented as a direct-mapped
hash table, hash collisions can occur in accessing the Exit
Table. That is, the key that points to the predictor entry for
one EBB can also map to a predictor entry for some other
EBB, leading to a prediction wildly at variance with the way
the keyed EBB will actually behave. Such hash collisions
can be detected by storing the actual key of the entry
together with the predictor data and checking the entry key
against the search key. If the keys match, this indicates that
no hash collision has occurred. In this case, the table access
can be treated as hit and the predictor data of the matching
entry can be read-out for processing as desired. The hit can
be reported to indicate the presence of an Exit Table entry
corresponding to the search key. If the keys do not match,
this indicates that a hash collision has occurred. In this case,
the table access can be treated as a miss and the read-out of
the predictor data of the matching entry can be blocked or
otherwise treated as invalid. The miss can be reported to
indicate the lack of an Exit Table entry corresponding to the
search key.

However, keys are relatively large and the consequences
of a hash collision, while lowering performance somewhat,
are not disastrous. This leads to an embodiment where the
predictors of the entries of the Exit Table are configured to
store a pre-defined number (such as three) of the bits of the
actual key in the entry, rather than the whole key, as check
bits. Hash collisions can be detected by checking the stored
key check bits of the entry key against the corresponding bits
of the search key. If these bits match, this is interpreted as
an indication that no hash collision has occurred. In this
case, the table access can be treated as hit and the predictor
data of the matching entry can be read-out for processing as
desired. The hit can be reported to indicate the presence of
an Exit Table entry corresponding to the search key. If the
bits do not match, this can be interpreted as an indication that
a hash collision has occurred. In this case, the table access
can be treated as a miss and the read-out of the predictor data
of the matching entry can be blocked or otherwise treated as
invalid. The miss can be reported to indicate the lack of an
Exit Table entry corresponding to the search key. The use of
such key check bits can detect most hash collisions while not
increasing entry size excessively. Thus, for example, three
check bits per predictor entry can detect all but one in eight
potential hash collisions, and correctly report them as lack-
ing Exit Table entries corresponding to the search key.
Predictor Quality Information

Each predictor entry of the Exit Table can include infor-
mation about the quality of the prediction defined by the
predictor entry, such as an estimate of how likely the
prediction is to be correct. An EBB that exits only by a single
unconditional branch will have a prediction that is 100%
accurate, while one that can and does exit from any of
several conditional branches may have a prediction that is
relatively unlikely to be correct, even if the prediction is the
most likely of the alternatives. Moreover, program transfer
behavior frequently changes during execution. For example,
during one phase of execution, an EBB fragment may
usually exit via a branch operation A, but in a later phase of
execution, the same EBB fragment may usually exit via
another branch operation B. Such variability makes it desir-
able for the prediction for the EBB fragment to change over
time, so as to track the most likely exit based on the recent
behavior.

Thus, program execution of the EBB fragments can be
used to update the quality information of the corresponding
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predictor entries as stored in the Exit Table and then modify
the predictions defined by the predictor entries themselves
when warranted by the quality information. Specifically,
when a prediction defined by an Exit Table entry is success-
ful, i.e., execution of the EBB fragment corresponding to the
Exit Table entry did in fact exit at the predicted point and to
the predicted target, the key for such EBB fragment can be
used to access the Exit Table entry and raise the quality
information of the predictor entry as appropriate. When a
prediction defined by an Exit Table entry is not successtul (a
mispredict), i.e., execution of the EBB fragment correspond-
ing to the Exit Table entry did not in fact exit at the predicted
point and to the predicted target, the key for such EBB
fragment can be used to access the Exit Table entry and
lower the quality information of the predictor entry as
appropriate. In the case of a mispredict, the execution
behavior carries information that defines the prediction that
would have been correct for that key. If the quality infor-
mation for the Exit Table entry drops below a replacement
threshold, the prediction defined by the Exit Table entry can
be replaced by the corrected prediction carried by the
execution behavior. This same replacement operation is
performed in the event that the Exit Table does not have any
entry corresponding to the key.

Besides being updated by ongoing execution behavior, the
predictor entries of the Exit Table can also be updated by a
bulk prediction load operation as described below in more
detail.

In one embodiment, the quality information of the pre-
diction defined by the predictor entry can be represented by
a one-bit or two-bit saturating counter that is part of each
predictor entry. The counter can be updated based on the
execution behavior of the corresponding EBB fragment. If
the prediction defined by a predictor for a given EBB
fragment is found to have been correct during execution of
the given EBB fragment, i.e. the EBB fragment did in fact
exit where it was expected to, the counter can be incre-
mented (unless saturated at the maximum count value).
However, if the prediction defined by a predictor for a given
EBB fragment is found to have been incorrect during
execution of the given EBB fragment, i.e. the EBB fragment
did not in fact exit where it was expected to, the counter can
be decremented. If the counter saturates down (i.e., its count
was already at the minimum count value), then the predictor
of'the entry can be updated to predict what would have been
the correct prediction and (in most variations) the counter is
incremented again. The effect of the counter is that the
predictor entry remains in the Exit Table if it is usually
correct, but if is incorrect for more than a few consecutive
predictions then it will be replaced. In one example, the
quality information of the predictor can be defined by a
single bit, indicating strong confidence and weak confidence
in the prediction. This allows the predictor entry for a
corresponding EBB fragment to miss (predict wrong) twice
in a row before being replaced by an updated prediction. In
other examples, the quality information of the predictor can
be defined by multiple bits so as to provide finer divisions of
confidence.

Predictor Head of Loop Marking and Loop Iteration Count

Common branch prediction schemes detects loops by
recognizing the bottom of a loop because it branches to a
recent target address of a previous branch. The target is
assumed to be the loop head. The branch predictor allocates
a loop counter, and counts the number of iterations until a
branch to the loop head is mispredicted, which is assumed
to be the loop exit. This first execution of the entire loop is
called a training execution. The branch predictor saves the
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counter value and the head address. The next time it encoun-
ters a branch to the head it assumes that the loop is being
re-entered, retrieves the saved count, and counts it down
with each branch to the head predicting that the branch will
be taken. When the counter exhausts (i.e., when the second
execution of the loop has iterated as many times as the first
training execution) it changes the prediction to untaken in
the expectation that the loop will again exit after the same
number of iterations. If the loop prediction is correct then
both the iteration branch and the exit branch will be correctly
predicted, avoiding the mispredict at loop exit that is inevi-
table in the absence of loop prediction.

There are obvious limitations to this loop branch predic-
tion strategy. For example, the loop may vary in its iteration
count, both for while-loops and also for fixed length loops
such as when iterating over triangular matrices. Then a loop
may not be executed a second time after it has been first
counted, or the saved state may be overwritten by other
loops before it is reused. Lastly, the detection of a looping
structure is subject to false positives while the detection of
loop exit is subject to false negatives. There are many
schemes proposed and in use to track and improve the
quality of loop prediction, which work more or less well.
Nevertheless it is common for modern CPUs to include loop
prediction, if only to achieve better results on matrix algebra
benchmarks.

Loop prediction as described above can be improved by
the construct of the Exit Table predictor entries as described
herein. Specifically, when the predictor entries of the Exit
Table are generated for a later bulk load operation as
described herein, the tool chain (i.e., the code generator)
knows from the source code of the program what constructs
constitute fixed-length loops. In some cases, the number of
iterations is statically known. In other cases, it may be
known from profiling. In yet other cases, the length is
unknown but is known to be fixed. Furthermore, the tool
chain knows which EBB fragments constitutes the head of
the loop. Such head EBB fragments can be associated with
predictor entries of the Exit Table, which are marked as head
of loop prediction together with an expected loop iteration
count as best the tool chain can determine.

Furthermore, the Prediction Logic can be configured to
detect when the prediction chain includes a predictor entry
that refers to an EBB fragment marked as a head of a loop.
In this case, the Prediction Logic allocates an iteration
counter for processing the EBB fragment which is initialized
with the expected loop iteration count as specified by the
predictor entry and pushes the predictor and associated
iteration counter onto the hardware loop stack. Each pre-
dicted control transfer operation is then checked against the
top entry on the loop stack. A match indicates a branch
operation to the head of the loop. On a match, the iteration
counter is decremented and the regular prediction is used. In
the event that at the decrement clears the iteration counter to
zero then the alternate prediction is used instead of the
regular prediction, predicting that the execution will fall
through the branch operation and the loop will exit.

If the execution of the loop exit occurs as predicted, then
the top entry is popped from the loop stack and the quality
information of the alternate prediction is upgraded normally.
However, if the exit prediction mispredicts (i.e., the loop
continued iterating longer than expected), then the iteration
counter continues decrementing, wrapping around. With a
non-zero wrapped iteration counter, the prediction resumes
predicting that the iteration will continue. Eventually the
loop will exit, causing a mispredict. The correct iteration
count for the loop can be determined from the value in the
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iteration counter and the original predicted iteration count of
the predictor entry. If this correct iteration count is small
enough to fit in the loop count information field of the
corresponding predictor entry, then the predictor entry is
updated with the correct iteration count and the predictor
quality rating is adjusted normally. The same adjustment
process is followed if the loop exits early. Here the correct
iteration count can be determined from the count value
remaining in the iteration counter at loop exit and the
original predicted iteration count of the predictor entry. The
predictor entry is then updated with the correct iteration
count and the predictor quality rating is adjusted normally.

The corrected iteration count values of the predictor
entries of the Exit Table can be copied to lower levels of the
prediction hierarchy and, when possible, back to the load
module for use in subsequently runs of the same program.
Thus, the loop prediction mechanism as described herein
does not require a training execution for statically predict-
able loops, and is self-profiling for loops with dynamic but
constant iteration counts. False positive loop detection can
be avoided because only tool-chain specified loops use loop
prediction. False negative predictions can possibly occur,
and will occur when a branch operation that is predicted to
return to the loop head does not, but rather than fall-through
and exit the loop, the control continues to code that even-
tually does return to the head of the loop. Code reorganiza-
tion by the tool chain can remove branches that can display
such behavior, at the cost of introducing an extra EBB in the
loop body.

Relatively few EBBs will be part of loops and so have
useful loop counts. As a result, the bits used for marking the
entry and storing the predicted loop iteration count would
appear to be wasted in the Exit Table for entries that
correspond to EBB fragments that are not part of a loop.
There are several possible ways to avoid this waste.

In one embodiment, the Exit Table can be split into two
parts, with entries corresponding to EBB fragments that are
part of a loop in one part and entries corresponding to EBB
fragments that are not part of a loop in the other part. Both
parts of the Exit Table can be accessed in parallel for a
matching predictor entry. The entries corresponding to EBB
fragments that are not part of a loop in the other part of the
Exit Table can avoid the bits used for marking the entry and
storing the predicted loop iteration count.

In another embodiment, the predictor entries correspond-
ing to EBB fragments that are part of a loop and the predictor
entries corresponding to EBB fragments that are not part of
a loop are stored in a single table (without the bits used for
marking the entry and storing the predicted loop iteration
count). A side table is configured to store the loop head
markings and the predicted loop iteration counts for EBB
fragments that are part of a loop. Again, both tables are
queried in parallel for matching predictor information.
Alternate Key Predictor Entry

The Exit Table predictor entries corresponding to certain
EBB fragments can store predictor information associated
with an alternate key. Such alternative key predictor entries
store predictors for an alternate execution path within the
corresponding EBB fragment where control passes as a
result of an untaken mispredict (where the execution path
falls through rather than transferring out of the EBB frag-
ment as predicted by the “regular” key predictor entries
corresponding to the EBB fragment). The alternate key
predictor entry can permit mispredict recovery to get back
on track without suffering a second mispredict (which would
otherwise happen when the fall-through code eventually
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itself exited) and without over-fetching from the dummy
predictors that are used for mispredicts without alternate
keys.

Of course, the execution path dictated by the alternate key
predictor entry may itself result in an untaken mispredict. In
this case, default dummy recovery operations can be per-
formed. Still, the availability of alternate keys reduce the
cost of common control forms such as exits from loops that
have the exit test at the bottom of the loop, and from
if-then-else saddle constructions in which the taken path is
the more commonly predicted.

The value of the key for an Alternate Key Exit Table
predictor entry corresponding to given EBB fragment can be
derived numerically from the value of the key of the regular
Exit Table predictor entry corresponding to given EBB
fragment. Many possible algorithms can be used to generate
the alternate key, and the algorithm used should guarantee
that no alternate key will collide with any other key. In one
embodiment, the alternate key is derived by subtracting one
from the value of the key of the regular Exit Table predictor
entry. This permits successive EBB fragments (which can
differ numerically by two) to each have their own alternate
key.

Ilustrative CPU

In accordance with the present disclosure, a sequence of
instructions organized as EBBs is stored in a Memory
System 101 and processed by a CPU (or Core) 102 as shown
in the exemplary embodiment of FIG. 6. The CPU (or Core)
102 includes a number of instruction processing stages
including at least one Instruction Fetch Unit or Fetcher (one
shown as 103), at least one Instruction Buffer (one shown as
105), at least one Decode Stage (one shown as 107) and
Execution Logic 109 that are arranged in a pipeline manner
as shown. The CPU (or Core) 102 also includes Prediction
Logic 111 that employs an Exit Table 113, at least one
Program Counter (one shown as 115), at least one L1
Instruction Cache (one shown as 117), and an L1 Data Cache
119.

The L1 Instruction Cache 117 and the [.1 Data Cache 119
are logically part of the hierarchy of the Memory System
101. The L1 Instruction Cache 117 is a cache memory that
stores copies of instruction portions stored in the Memory
System 101 in order to reduce the latency (i.e., the average
time) for accessing the instruction portions stored in the
Memory System 101. In order to reduce such latency, the [.1
Instruction Cache 117 can take advantage of two types of
memory localities, including temporal locality (meaning that
the same instruction will often be accessed again soon) and
spatial locality (meaning that the next memory access for
instructions is often very close to the last memory access or
recent memory accesses for instructions). The L1 Instruction
Cache 117 can be organized as a set-associative cache
structure, a fully associative cache structure, or a direct
mapped cache structure as is well known in the art. Simi-
larly, the L1 Data Cache 119 is a cache memory that stores
copies of operands stored in the memory system 101 in order
to reduce the latency (i.e., the average time) for accessing
the operands stored in the Memory System 101. In order to
reduce such latency, the L1 Data Cache 119 can take
advantage of two types of memory localities, including
temporal locality (meaning that the same operand will often
be accessed again soon) and spatial locality (meaning that
the next memory access for operands is often very close to
the last memory access or recent memory accesses for
operands). The L1 Data Cache 119 can be organized as a
set-associative cache structure, a fully associative cache
structure, or a direct mapped cache structure as is well
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known in the art. The hierarchy of the Memory System 101
can also include additional levels of cache memory, such as
a level 2 cache, level 3 cache, as well as main memory. One
or more of these additional levels of the cache memory can
be integrated with the CPU 102 as is well known. The details
of the organization of the memory hierarchy are not par-
ticularly relevant to the present disclosure and thus are
omitted from the figures of the present disclosure for sake of
simplicity.

The Program Counter 115 stores the memory address for
a particular instruction and thus indicates where the instruc-
tion processing stages are in processing the sequence of
instructions. This memory address can be derived from a
predicted (or resolved) target address of a control-flow
operation (branch or call operation), the saved address in the
case of a return operation, or the sum of memory address of
the previous instruction and the length of previous instruc-
tion. The memory address stored in the Program Counter
115 can be logically partitioned into a number of high-order
bits representing a cache line address ($ Cache Line) and a
number of low-order bits representing a byte offset within
the cache line for the instruction.

The Prediction Logic 111 employs an Exit Table 113
whose entries stores predictors corresponding to EBB frag-
ments that are executing on the CPU 102. The Prediction
Logic 111 is configured to access the Exit Table 113 (and
possibly an Exit Cache associated therewith) to generate and
store a chain of predictors that refer to consecutive EBB
fragments of the program to be executed by the CPU 102.
The chain of predictors is generated and stored ahead of the
Decode Stage 107. The chain of predictors can be used to
control prefetch operations that prefetch into cache the cache
lines that include the instructions of the EBB fragments as
referred to by the chain of predictors. The chain of predictors
can also be used to control fetch operations carried out by
the Fetcher 103 that fetch such cache lines from the L1
Instruction Cache 117 into the Instruction Buffer 105. The
chain of predictors can also be used to control read-out
operations that read-out the sequence of instructions of the
EBB fragments as referred to by the chain of predictors from
the Instruction Buffer 105 to the Decode Stage 107 as well
as to control shifting operations that operate on cache lines
to isolate each instruction of the EBB fragments as referred
to by the chain of predictors for decoding and follow-on
execution. During start-up and mispredict recovery, the new
chain of predictors begins at the target memory address
stored by the program counter 115.

The Fetcher 103, when activated, sends a memory request
to the L1 Instruction Cache 117 to fetch a cache line from the
L1 Instruction Cache 117 at a specified cache line address ($
Cache Line). This cache line address can be derived from the
predictors of the chain generated by the Prediction Logic
111. The L1 Instruction Cache 117 services this request
(possibly accessing lower levels of the memory system 101
if missed in the L1 Instruction Cache 117), and supplies the
requested cache line to the Fetcher 103. The Fetcher 103
passes the cache line returned from the L1 Instruction Cache
117 to the Instruction Buffer 105 for storage therein.

The Decode Stage 107 is configured to decode one or
more instructions stored in the Instruction Buffer 105. Such
decoding generally involves parsing and decoding the bits of
the instruction to determine the type of operation(s) encoded
by the instruction and generate control signals required for
execution of the operation(s) encoded by the instruction by
the execution/retire logic 109.

The Execution Logic 109 utilizes the results of the
Decode Stage 107 to execute the operation(s) encoded by
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the instructions. The Execution Logic 109 can send a load
request to the [.1 Data Cache 119 to fetch data from the L1
Data Cache 119 at a specified memory address. The L.1 Data
Cache 119 services this load request (possibly accessing the
lower levels of the memory system 101 if missed in the [.1
Data Cache 119), and supplies the requested data to the
Execution Logic 109. The Execution Logic 109 can also
send a store request to the L1 Data Cache 119 to store data
into the memory system at a specified address. The [.1 Data
Cache 119 services this store request by storing such data at
the specified address (which possibly involves overwriting
data stored by the data cache and lowering the stored data to
lower levels of the hierarchical memory system).

The instruction processing stages of the CPU (or Core)
102 can achieve high performance by processing each
instruction and its associated operation(s) as a sequence of
stages each being executable in parallel with the other
stages. Such a technique is called “pipelining.” An instruc-
tion and its associated operation(s) can be processed in five
stages, namely, fetch, decode, issue, execute and retire as
shown in FIG. 7.

In the fetch stage, the Fetcher 103 sends a request to the
L1 Instruction Cache 117 to fetch a cache line from the L1
Instruction Cache 117 at a specified cache line address ($
Cache Line). The Fetcher 103 passes the cache line returned
from the L1 Instruction Cache 117 to the Instruction Buffer
105 for storage therein.

The Decode Stage 107 decodes one or more instructions
stored in the Instruction Buffer 105. Such decoding gener-
ally involves parsing and decoding the bits of the instruction
to determine the type of operation(s) encoded by the instruc-
tion and generating control signals required for execution of
the operation(s) encoded by the instruction by the Execution
Logic 109.

In the issue stage, one or more operations as decoded by
the Decode Stage 107 are issued to the Execution Logic 109
and begin execution.

In the execute stage, issued operations are executed by the
functional units of the Execution Logic 109 of the CPU/Core
102.

In the retire stage, the results of one or more operations
produced by the Execution Logic 109 are stored by the
CPU/Core 102 as transient result operands for use by one or
more other operations in subsequent issue/execute cycles.

The Execution Logic 109 includes a number of functional
units (FUs) which perform primitive steps such as adding
two numbers, moving data from the CPU proper to and from
locations outside the CPU such as the memory hierarchy,
and holding operands for later use, all as are well known in
the art. Also within the execution/retire logic 109 is a
connection fabric or interconnect network connected to the
FUs so that data produced by a producer (source) FU can be
passed to a consumer (sink) FU for further storage or
operations. The FUs and the interconnect network of the
execution/retire logic 109 are controlled by the executing
program to accomplish the program aims.

Exemplary Embodiment of the Prediction Logic

FIG. 8 shows an embodiment of the Prediction Logic 111
of the CPU of FIG. 6, including the Exit Table 113 and
associated cache referred to as the Exit Cache 151. The Exit
Table 113 and the Exit Cache 151 can be accessed to
generate a chain of predictors that refer to consecutive EBB
fragments of the program to be executed by the CPU 102.
The chain of predictors is generated ahead of the Decode
Stage 107 (a form of run-ahead prediction). The latency of
accessing entries in the Exit Table 113 can be an issue in
keeping up with the decoding operations of the Decode
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Stage 107, particularly where the Decode Stage 107 requires
a prediction every cycle for the case in which every instruc-
tion can perform a control transfer operation. Such latency
can be masked by storing the predictor entries read-out from
the Exit Table 117 in the Exit Cache 151. In one embodi-
ment, the Exit Cache 151 is a small hardware-based highly
associative memory structure that holds recent predictor
entries read-out from the Exit Table 113. Furthermore, the
access latency of the Exit Cache 151 can be fast enough to
read-out a matching predictor entry per cycle as needed.

The predictors read from the Exit Table 113 and stored in
the Exit Cache 151 are supplied to a Prefetcher 175. Each
predictor supplied to the Prefetcher 175 can include an
address field that can be used to derive the target address for
the starting cache line of a corresponding EBB fragment (or
trigger access to the Return Stack to derive the return
address for such starting cache line). Such predictor entry
can also include a cache line count field that specifies the
extent of the corresponding EBB fragment in memory by a
number of cache lines. From the target address (or return
address) and the cache line count, the Prefetcher 175 can be
configured to derive the cache line address of every cache
line of the corresponding EBB fragment. The Prefetcher 175
may be implemented to issue a separate prefetch request for
each cache line of the EBB fragment, or the hierarchy may
be implemented so that the entire contiguous group of cache
lines of the EBB fragment can be requested with a single
request, thereby reducing request traffic in the memory
hierarchy.

The chain of predictors read-out from the Exit Cache 151
are output to a Prediction Queue 153 that feeds such
predictors for processing by Decode Control Logic 155 for
control of the decode operations performed by the Decode
Stage 107 of the CPU 102. As the predictors are output to the
Prediction Queue 153, a copy (or part) of each predictor is
stored as an update record in the Update Queue 157. The
update records stored in the Update Queue 157 are accessed
by Mispredict Recovery Logic 159 that processes these
update records in conjunction with execution behavior infor-
mation reported by the Execution Logic 109. The execution
behavior information permits an executed transfer operation
to report to the Mispredict Recover Logic 159 what actually
did happen and update future predictor entries to reflect that
execution behavior. While the predictor entries provide an
indication as to what is expected to happen, if the predictions
defined by the predictor entries turns out to be wrong, it will
be necessary to update the corresponding predictor entries in
the Exit Table and Exit Cache with prediction information
that reflects what actually did happen. Such an update may
need to upgrade or downgrade the quality rating of the
predictor entry or to replace the address field of the predictor
entry. What actually happened will not be known until
predicted instruction have been decoded and are executed
and an executed control transfer operation either transfers
control or does not transfer control as predicted. At that time,
the Mispredict Recovery Logic 159 can be configured to
locate the predictor entry in the Update Queue 157 that is
either confirmed (or not confirmed) based on the execution
behavior, and update the predictor entry accordingly. The
updated predictor entry can then flow to the Exit Cache 151
and the Exit Table 113 where they are used to overwrite the
corresponding predictor entries stored therein and used for
subsequent processing.

The generation of the chain of predictors can start when
the Mispredict Recovery Logic 159 detects that the execu-
tion behavior of the EBB fragments by the Execution Logic
109 has encountered a mispredict and raises a “mispredict”
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signal that is supplied to the Exit Cache 151. The mispredict
can be a taken mispredict where the Execution Logic 109
executes in fact an unexpected transfer out of a given EBB
fragment, or the mispredict can be an untaken mispredict
where the Execution Logic 109 unexpectedly does not
transfer out of a given EBB fragment but instead falls
through to the following instruction. In the case of a taken
mispredict, the Execution Logic 109 will have computed the
target address of the next EBB fragment as part of executing
the control transfer operation that exits the given EBB
fragment. That target address can be used to derive the new
key for the chain of future predictions. In the case of an
untaken mispredict, the new key is the alternate key for the
previously expected transfer out of the given EBB fragment
that wasn’t taken.

As shown in the flow chart of FIG. 9, the Exit Cache 151
can be configured to cooperate with the Mispredict Recover
Logic 159 and the Exit Table 113 in order to generate the
chain of predictors as follows. In block 901, the Exit Cache
151 checks whether the Mispredict Recovery Logic 159 has
raised the “mispredict” signal. If so (the “mispredict” signal
is raised), the operations continue to block 903 where the
new target address as supplied from the Mispredict Recover
Logic 159 is used to generate a key that is used to query the
Exit Cache 151, and the operations continue to block 905 to
determine if a matching predictor entry has been found and
read-out from the Exit Cache 151 as a result of the query of
block 903. If so, in block 907, the matching predictor entry
is output to the Prediction Queue 153 as the first predictor
entry (the head predictor entry) in a new chain of predictors
and the operations return to step 901 to generate the next
entry in the chain (or start a new chain if a mispredict is
signaled). If the matching entry is not found in block 905,
the operations continue to block 915 below.

If the “mispredict” signal is not raised in block 901, the
operations continue to block 909 where the address field of
the most recent predictor read-out from the Exit Cache 151
is used to generate a key that is used to query the Exit Cache
151, and the operations continue to block 911 to determine
if a matching predictor entry has been found and read-out
from the Exit Cache 151 as a result of the query of block
909. If so, in block 913, the matching predictor entry is
output to the Prediction Queue 153 as the next predictor in
the chain and the operations return to step 901 to identify the
following predictor in the chain (or start a new chain if a
mispredict is signaled).

In block 915, the key of the missing predictor entry (that
results from the query of block 905 or 911) is supplied to the
Exit Table 113 for querying the Exit Table 113 as described
with respect to the flow chart of FIG. 10.

In block 917, the Exit Cache is configured to wait for
receipt of predictor entry corresponding to the key supplied
in block 915. This can be a predictor entry whose key
matches the key supplied in block 915 or possibly a
“dummy” predictor entry if no matching predictor entry is
found in the Exit Table 113.

In block 919, the predictor entry forwarded by the Exit
Table 113 is stored in the Exit Cache 151 and also output to
the Prediction Queue 153.

In block 921, the predictor entry forwarded by the Exit
Table 113 is also forwarded to Prefetcher 175 in order to
initiate prefetching operations with respect to the target EBB
fragment corresponding to such predictor entry as described
herein.

In block 923, the address field of the predictor entry
forwarded by the Exit Table 113 is used to generate a key to
query the Exit Cache 151, and the operations continue to
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block 911 to determine if a matching predictor entry has
been found and read-out from the Exit Cache 151 as a result
of the query of block 923.

Note the chaining process of the Exit Cache 151 (perhaps
with the very first key) may be broken because the Exit
Cache 151 does not store a matching predictor entry for the
desired key. In this case, the key is presented to the Exit
Table 113 and chaining continues therein.

The query operations of the Exit Table 113 is shown in the
flow chart of FIG. 10. In block 1001, the Exit Table 113
waits for supply of a key for the missing predictor entry as
supplied by the Exit Cache 151. In block 1003, the key for
the missing predictor entry as supplied by the Exit Cache
151 is used to query the Exit Table 113 for a matching
predictor entry and the operations continue to block 1005 to
determine if a matching predictor entry has been found and
read-out from the Exit Table 113 as a result of the query of
block 1003. If so, in block 1007, the matching predictor
entry is supplied to the Exit Cache 151 for storage and
output to the Prediction Queue 153. If there is no matching
entry found in block 1005 (in this case, there is no matching
entry in both the Exit Table 113 and the Exit Cache 151), the
operations continue to block 1009 where the Exit Table 113
generates a “dummy” predictor entry as described herein. In
block 1011, the Exit Table 113 supplies the “dummy”
predictor entry to the Exit Cache 151 for storage and output
to the Prediction Queue 153.

The chain of predictors as generated by the Exit Cache
151 are stored in parallel by two queues, the Prediction
Queue 153 and the Update Queue 157, both of which are
hardware-based FIFO buffers that store a portion of the
chain of predictor entries for the EBB fragments that are
currently working their way to and through the Decode
Stage 107. The Prediction Queue 153 and the Update Queue
157 advance in lock step as the predictor entries for the EBB
fragments are processed in a FIFO manner as they work their
way to and through the Decode Stage 107.

When a predictor entry with a fully resolved address is
entered into the Prediction Queue 153, a copy of the
predictor entry is also supplied to the Fetcher 103, which is
configured to initiate memory requests that fetch the cache
lines pointed to by the predictor entry from the cache of the
Memory System 101 (or main memory if not already in
cache) into the Instruction Buffer 105 of the CPU 102.

The predictor entries stored in the Prediction Queue 153
are supplied to Decode Control Logic 155 for control of the
decode operations performed by the Decode Stage 107 of
the CPU 102. More specifically, the Decode Stage 107
includes an Instruction Shifter 107A that operates to isolate
instructions from instruction cache lines and passes on
isolated instructions for detailed decode operations carried
out by the Decode Stage 107. The Decode Control Logic 155
is configured to count the number of cache lines shifted by
the Instruction Shifter 107A in processing the current pre-
dictor entry and the number of shifts the Instruction Shifter
107A has performed within each of these cache lines. It
compares these counts against the predicted line count and
instruction count of the current predictor entry (which
corresponds to the EBB fragment that is being decoded by
the Decode Stage 107). When the counts match, it moves to
the next predictor entry in the chain (to effect a transfer to
the next EBB fragment) and controls the Instruction Shifter
107A to begin shifting the cache lines corresponding to the
next EBB fragment (i.e., the predicted target address (or
return address) of the exiting EBB fragment). When trans-
ferring to the next EBB fragment, the operations can involve
the following:
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i) the Instruction Shifter 107A discarding any remaining
part of the cache line being shifted;

i) the Instruction Shifter 107A obtaining one or more
cache lines corresponding to the next EBB fragment
from the Instruction Buffer 105;

iii) the Decode Control Logic 155 discarding the current
(now exhausted) predictor entry;

iv) the Decode Control Logic 155 cooperating with the
Prediction Queue 153 to extract the next predictor entry
of the chain from the head of the Prediction Queue 153
(i.e., advancing the FIFO Prediction Queue) and to
transfer the next predictor entry to the Decode Control
Logic 155; and

v) the Instruction Shifter 107 A shifting instructions from
the new cache line corresponding to the next EBB.

When a cache line is consumed by the Instruction Shifter
107A, it obtains the adjacent cache line from the Instruction
Buffer 105. The count of the number of cache lines con-
sumed by the Instruction Shifter 107A is incremented. When
this count reaches the cache line count value specified by the
current predictor entry, the count of the number of instruc-
tions shifted (or isolated) in the current cache line by the
Instruction Shifter 107 A is tracked. This is the last cache line
of the EBB fragment. When that count value reaches the
instruction count value specified by the current predictor
entry, the address used for cache lines from the Instruction
Buffer 105 is switched to the predicted target address (or
return address) and shifting continues from the next EBB
fragment in the chain.

It is quite common for EBB fragments to be only one
(predicted) instruction long. So if the Decode Stage 107 is
to be able to feed instructions for issue and execution at
maximal rate, it is necessary for the Prediction Queue 153
and the Instruction Shifter 107A to be able to effect one
transfer every cycle. However, except for tight loops, it is
uncommon for there to be long sequences of one-instruction
EBB fragments, so the buffering provided by the Prediction
Queue 153 can be sufficient to hide the lower rate of
occasional references that miss in the Exit Cache 151 and
require access to the Exit Table 113. Tight loops (which
involve a small number of EBB fragments) can fit in the Exit
Cache 151, which can be configured to chain the predictor
entries at a prediction-per-cycle rate that can keep up with
the decode operations of the Decode Stage 107.

This general prediction flow from the Exit Cache 151 to
the Prediction Queue 153 to the Decode Control Logic 155
is complicated by the presence of calls and returns. A
call-type predictor entry points to a target EBB fragment,
just like a branch-type predictor entry. However, a return-
type predictor entry has a return address that will vary
depending on the call site being returned to. In addition,
because instructions may contain more than one call opera-
tion (which are executed one at a time), a return operation
may need to re-execute part of the instruction that contained
the call operation. The return address of the return operation,
and how much if any remains to be executed in the calling
instruction, can be part of a return state that is saved in a
hardware-based stack data structure, which is referred to as
the Return Stack herein. Such return state is saved in the
Return Stack when a call-type predictor entry is transferred
from the Prediction Queue 153 to the Decode Control Logic
155 or when an unpredicted call operation is executed by the
Execution Logic 109.

When a return operation is predicted, it needs the corre-
sponding call information to know the address(es) to return
to. This return address can be obtained from the Return
Stack. The return-type predictor entry can then be updated
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with the return address, and thereafter is treated the same as
would be a branch-type predictor entry.
Details of Exemplary Prefetcher

In one embodiment, the Prefetcher 175 is a hardware unit
that is configured to issue memory requests to the memory
hierarchy of the CPU 102 that stores instructions. The
memory requests that are issued by the Prefetcher 175 can
be specially designated as prefetch requests, distinct from
loads, stores, or other kinds of memory activity. Implemen-
tations can vary in their response to a prefetch request. In
one embodiment, the prefetch request is treated as a request
to hoist, i.e. copy the addressed cache line one level higher
in the memory hierarchy of the CPU that stores instructions.
In another embodiment, the prefetch request can be treated
as a request to hoist the addressed cache line to the top (level
one) instruction cache 117 in the memory hierarchy of the
CPU. In both embodiments, the hoist has the effect of
reducing the amount of time that would be required to get
the addressed cache line to the decoder if it should happen
that execution does in fact get as far as the predicted EBB
without an intervening mispredict.

The predictor entry used to control the Prefetcher 175 can
include an address field that can be used to derive the target
address for the starting cache line of a corresponding EBB
fragment (unless a return operation was predicted). Such
predictor entry can also include a cache line count field that
specifies the extent of the corresponding EBB fragment in
memory by a number of cache lines. From the target address
and the cache line count, the Prefetcher 175 can be config-
ured to derive the cache line address of every cache line of
the corresponding EBB fragment. These cache lines will be
contiguous in memory if there is more than one. The
Prefetcher 175 may be implemented to issue a separate
prefetch request for each cache line of the EBB fragment, or
the hierarchy may be implemented so that the entire con-
tiguous group of cache lines of the EBB fragment can be
requested with a single request, thereby reducing request
traffic in the memory hierarchy.

Predictor entries corresponding to return operations as
stored in the Exit Table 113 (and stored in the Exit Cache
151) and passed to the Prefetcher 175 can be processed in
conjunction with a call stack data structure maintained by
the Prefetcher 175 in order to derive the cache line address
into the target EBB being returned to by the predicted return
operation. Entries can be pushed on this call stack data
structure whenever the Prefetcher 175 processes a call-type
predictor entry. The branch-type and call-type predictor
entries both include an address field that points to the entry
address of the target EBB fragment. The Prefetcher 175
saves the cache line address for the entry address into the
target EBB fragment. It also tallies the cumulative cache line
counts within the current EBB that it has prefetched. The
cache line address for the entry address into the target EBB
fragment, adjusted by the cache line counts already
prefetched, gives the cache line addresses of each succeed-
ing EBB fragment. The Prefetcher 175 also tallies the count
of untaken call operations within the caller EBB up to the
point of the predicted taken call operation (as specified by
the untaken call count fields for the predictor entry(ies) of
the caller EBB) and thus tracks the EBB fragment number
that will be returned to. The cache line addresses (along with
the cumulative counts to that point) are pushed onto the call
stack data structure when processing the predictor entries
corresponding to call operations within the current EBB.
When the Prefetcher 175 processes a return-type predictor
entry, the Prefetcher 175 can be configured to pop the top
entry of the call stack data structure to get a cache line
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address for the return point of the corresponding return
operation, and uses this cache line address (possibly with an
address offset represented by the address field of the return-
type predictor entry) to derive a cache line address for the
starting cache line of the next EBB fragment in the caller
EBB. At the same time, the starting cache line address into
the caller EBB and the fragment number determined from
the untaken call counts can be used to generate a key to
query the Exit Table 115 (and/or the Exit Cache 151) for the
predictor entry associated with the returned-to EBB frag-
ment. That predictor entry will give a cache line count field
that specifies the extent of the next EBB fragment in the
caller EBB by a number of cache lines. From the starting
cache line address and this cache line count, the Prefetcher
175 can be configured to derive the cache line address of
every cache line of the next EBB fragment in the caller EBB.
These cache lines will be contiguous in memory if there is
more than one. The Prefetcher 175 may be implemented to
issue a separate prefetch request for each cache line of the
next EBB fragment in the caller EBB, or the hierarchy may
be implement so that the entire contiguous group of cache
lines of the next EBB fragment in the caller EBB can be
requested with a single request, thereby reducing request
traffic in the memory hierarchy. The predictor entry associ-
ated with the returned-to EBB fragment can also be pro-
cessed to generate the key for the next following predictor
entry and the prefetching can continue down the chain of
predictor entries.

In the presence of mispredicts, it is possible for the
Prefetcher 175 to process return-type predictor entries for
which it has not seen the corresponding call operation, thus
causing the call stack data structure to underflow. In such a
case, as there are no return addresses, the Prefetcher 175
cannot prefetch back into the caller EBB. However, as soon
as chaining leads to a non-return prediction the Prefetcher
175 will again have an address (the target EBB entry) and
can resume prefetching.

In addition, a long series of nested call operations can
possibly overflow the limited hardware capacity of the call
stack data structure. In such a case, the Prefetcher 175 can
be configured to stop pushing return addresses as more
predictor entries corresponding to call operations appear in
the chain. Alternatively, the Prefetcher 175 can be config-
ured to allow the call stack data structure to wrap around and
continue pushing return addresses on top of previously
pushed ones. The newly pushed return addresses are neces-
sarily going to be returned to sooner than the older over-
written ones, and so are more likely to be still relevant when
the calls start returning. Overwritten portions of the call
stack data structure cannot be used to re-prefetch the return
point and thereafter, so the Fetcher 103 (different from the
Prefetcher 175 and described elsewhere) may have to obtain
post-return lines from deeper in the hierarchy than if the
Prefetcher 175 had a bigger call stack data structure. Sub-
sequently, a mispredict can reset the operations of the
Prefetcher 175, which will pick up from that point including
subsequent call operations.

The predictor entries output from the Exit Table 113 can
possibly be generated at a rate faster than the Prefetcher 175
can issue memory requests to the memory hierarchy of the
CPU. However, it is not necessary for the Prefetcher 175 to
store and process the predictor entries that it has not been
able to keep up with. Instead the Prefetcher 175 can discard
such predictor entries. In this case, the Prefetcher 175 can be
configured to store the final key in a chain or predictor
entries, and updating the chain of predictor entries as more
predictions are added to the chain.

10

20

25

30

35

40

45

50

55

60

65

28

When the Prefetcher 175 has completed issuing prefetch
requests for its current prediction, it can compare the target
address of next EBB fragment to be prefetched with the
saved last key of the chain of predictor entries. If the two
match then the Prefetcher 175 has caught up with the chain
of predictor entries output from the Exit Table. If they do not
match, then the Prefetcher 175 can be configured to query
the Exit Cache 151 (and possibly the Exit Table 113) with
the target address as a key. The Exit Cache 151 will then
return the next predictor entry in the chain, which the
Prefetcher 175 will use for prefetch requests until it in turn
is exhausted. The process continues until either the
Prefetcher 175 catches up or the Exit Cache 151 is started on
a new chain disjoint from the prior chain that was being
prefetched.

This processing is designed such that the Prefetcher 175
does not overrun with respect to loops (and other possible
code constructs) whose predictor entries make their way into
the Exit Cache 151. For example, a chain of predictor entries
that leads into a loop that is not in the Exit Cache 151 will
follow the chain in the Exit Table 113, and the entries from
the Exit Table 113 will be entered into the Exit Cache 151.
The Prefetcher 175 will follow the same chain prefetching as
it goes. Eventually the chain of predictors will lead back to
the top of the loop, but the prediction for that EBB will have
been placed in the Exit Cache 151 the first time chaining
through the loop, and the Exit Cache 151 will stop request-
ing further chain entries of the Exit Table 113. The
Prefetcher 175 is also stopped such that it does not follow
the chain in the Exit Table around the loop over and over,
flooding the memory hierarchy with pointless redundant
prefetch requests.

A mispredict can start a new chain unless the correct
target is found in the Exit Cache 151. Consequently if the
sequence of keys being used to obtain predictor entries from
the Exit Table 113 ceases to be linked by the successive
target addresses it usually indicates that the former chain
was being followed in error. Consequently there is no point
to issuing any more prefetch requests for lines in that chain,
whereas the new chain should represent the correct execu-
tion path and should be prefetched. Hence, when the
Prefetcher 175 detects a break in the chain it abandons the
chain it was prefetching and starts prefetching the predic-
tions of the new chain.

The Prefetcher 175 can be configured to run arbitrarily far
ahead of actual decode and execution. If it is way ahead on
a chain that turns out to be down an incorrect execution path
then it may have prefetched a large number of unneeded
lines, which can lead to needless operations that scrub the
instruction cache. To avoid such waste, the Prefetcher 175
can be configured track the quality ratings of the predictions
of the chain as it goes and/or to derive a cumulative quality
rating for the chain as a whole. This cumulative quality
rating can be used to throttle the Prefetcher 175, such that it
prefetches more lines and/or further down the chain when
the cumulative rating is high than when it is low. A mispre-
dict can be used to reset the cumulative quality rating to a
neutral value.

Details of Exemplary Exit Cache

The Exit Cache 151 is a cache of the most recent predictor
entries obtained from the Exit Table 113. The Exit Cache
151 can be designed such that it outputs a predictor entry at
a rate of one per cycle and stores all the EBBs of most loops
that do not contain calls. This permits the predictor entries
to chain around most loops entirely from the Exit Cache 151,
which saves latency and power compared to obtaining
predictions direct from the Exit Table 113.
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As explained elsewhere, certain predictor entries can have
an associated alternate key that can be used for mispredict
recovery. For example, the predictor entry for a closing
(backward) branch operation of a loop can have an associ-
ated alternate key, reflecting the case when the loop exits
rather than repeats again. When the Exit Cache 151 detects
a loop (by detecting chaining to a request for a predictor
entry that is already in the Exit Cache 151), then it no longer
needs to load more predictor entries of the chain from the
Exit Table 113 into the Exit Cache 151 as all of the EBB
fragments of the loop are already in the Exit Cache 151.
Instead, upon detecting a loop, the Exit Cache 151 can be
configured to start chaining the execution path dictated by
the alternate key. This follows the branch operation that
closes the loop and thus triggers following a chain of
predictors down the execution path that will be taken when
the loop stops iterating. This alternate chain of predictors
can be pre-loaded into the Exit Cache 151 upon detecting the
loop, and thus can be used to fetch the corresponding EBB
fragments of the alternate path into the Decode Stage 107
without waiting for such predictor entries to be read-out
from the Exit Table 113. However, because the Exit Cache
151 is of limited size, the Exit Cache 151 must not load so
many alternate-chain predictor entries that it overwrites
some of the predictor entries of the loop itself. In this case,
the Exit Cache 151 would need to reload such loop predictor
entries from the Exit Table 113.

In one embodiment, the Exit Cache 151 can be formed by
a ring buffer, with predictor entries from the Exit Table 113
placed into the ring buffer in sequential order with wrap-
around. In this case, the predictor entries for a loop will be
placed in the ring buffer in sequential order, starting with the
EBB fragment at the top of the loop and ending with the
EBB fragment at the bottom of the loop. When a loop is
detected (by finding the next predictor entry in of the chain
already in the ring buffer), then necessarily that predictor
entry must be for the top of the loop and the earliest predictor
entry in the ring buffer corresponds to the bottom of the loop.
It is then possible to load the alternate chain predictor entries
into the ring buffer (starting adjacent the predictor entry for
the bottom of the loop) until an alternate chain predictor
entry would overwrite the known predictor entry for the top
of the loop, and then pause alternate path chain predictor
loading at that point. It will be evident that other policies can
have similar cautious alternate loading.

Details of Exemplary Prediction Queue and Update Queue

In one embodiment, the Exit Cache 151 outputs a chain of
predictor entries to the Prediction Queue 153 and a corre-
sponding chain of pending update records to the Update
Queue 157 at a rate that the queues can accept them. The
queues can be configured to throttle this rate so as to
preclude queue overflow. The Exit Cache 151 can continue
loading predictor entries from the Exit Table 113 if it has
space, even though the Prediction and Update Queues are
blocking the output of predictor entries/update records from
the Exit Cache 151.

The Exit Cache 151 can be configured to construct an
update record for each predictor entry output by the Exit
Cache 151 to the Prediction Queue 153. The update records
are stored by the Update Queue 157 and carry information
that permits an executed transfer to report what actually did
happen and update future predictor entries to reflect that
experience. The update record can include the address field
and quality information copied from a predictor entry output
from the Exit Cache 151 and transferred into the Prediction
Queue 153. The update records stored in the Update Queue
157 advance in a FIFO manner in step with the predictor
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entries stored in the Prediction Queue 153. Thus, if there is
space in one there is space in the other.

The predictor entries stored in the Prediction Queue 153
are transferred to the Decode Control Logic 155 for control
of the Instruction Shifter 107A as described herein. In
conjunction with this processing, the Update Queue 157
constructs a partial prediction comprising the address field
and quality information from the head pending update
record. This partial prediction can be supplied to the Decode
Stage 107 where it advances through the decode operations
of the Decode Stage for the current EBB fragment. The
partial prediction is exposed when the corresponding
instruction, now fully decoded, is executed. If that instruc-
tion contains a taken transfer then the corresponding partial
prediction can be augmented to a full prediction by adding
the actual target address of the taken transfer (or the fol-
lowing address field in the caller if the transfer was a return
operation) and the kind of transfer. The full prediction
resulting from augmentation is in all respects what the
original prediction should have been to successfully predict
the transfer that actually happened. This prediction may then
be used to update the corresponding original predictor entry
in the Exit Table 113 and the Exit Cache 151.

When there is no predictor entry in the Exit Table 113 or
the Exit Cache 151 for the next key of a chain of predictor
entries, the Exit Cache 113 transfers a “dummy” predictor
entry to the Prediction Queue 153. This “dummy” predictor
entry can include a predefined “null” address field, a satu-
rated cache line count and a saturated instruction count. The
Decode Control Logic 155 can interpret the “dummy”
predictor entry as a prediction for infinite cache lines and
instructions so that the Instruction Shifter 107A will con-
tinue shifting until a mispredict occurs. The Exit Cache 151
also constructs a new update record that includes the key
used in the unsuccessful search and default quality infor-
mation. The default quality information can be set so that
when a control transfer operation is executed and the new
predictor entry is entered into the Exit Table 113 and Exit
Cache 151, the new predictor entry will have the lowest
possible quality rating. This policy reflects the expectation
that newly executed code often has special control flow the
very first time when executed, but thereafter follows a
different pattern. While the new predictor entry will be used
the next time the corresponding EBB fragment is entered, if
it misses on that second execution then the minimal quality
rating will cause the prediction to be immediately replaced
with the new behavior without getting a second chance to
predict successfully.

Note that update records stored in the Update Queue 157
need not contain the quality information of the original
prediction. If it does not, then the augmented update record
must always be sent to the Exit Table 113, where its key can
be used to check the corresponding predictor entry’s quality
information and adjust or update the entry as appropriate.
However, carrying the quality information in the update
records of the Update Queue 157 permits optimizing this
process, because whether adjustment or update is needed can
be determined during the update process. Because most
predictions are correct, augmentation will commonly find
that it has a correct prediction that is already high quality, for
which no adjustment is needed and the candidate update
may be abandoned. This saves the power of the pointless
query of the Exit Table 113.

It will be evident that other such optimizations are pos-
sible depending on experience policy. For example, a pre-
dictor entry with quality information indicating a high
quality prediction may be changed to indicate a low quality
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prediction if it mispredicts, but will not be replaced. Con-
sequently there is no need to place a full predictor entry in
the Update Queue 157, nor to track the counts so as to
construct an augmented prediction. A mispredict need only
send a quality adjustment signal back to the Exit Cache 151
and Exit Table 113 and can save power by avoiding sending
the full augmented prediction.

Details of Exemplary Fetcher, Instruction Buffer, Decode
Control Logic and Instruction Shifter

In the exemplary embodiment of FIG. 8, the Instruction
Buffer 105 is operably disposed between the L1 Instruction
Cache 117 and the Instruction Shifter 107A of the Decode
Stage 107. The Instruction Buffer 105 operates as a small
staging cache that buffers a stream of cache lines that have
been predicted by the chain of predictor entries to be needed
for decode and subsequent execution. The Fetcher 103 is a
hardware unit that is configured to issue memory requests
(load operations) that fetch this stream of cache lines from
the memory hierarchy that stores instruction into the Instruc-
tion Buffer 105. The Fetcher 103 can maintain state about
the fetch process for each predictor entry that it processes.
The state can include the cache line address that it is fetching
from, and a count of the cache lines to fetch starting at that
address. Fetching continues, advancing the cache line
address, until the count of cache lines have been fetched.

There can be special handling when the cache line count
is saturated, i.e., it has the maximal value. In such a case,
fetching continues indefinitely, with the Fetcher 103 and the
Instruction Buffer 105 cooperating to keep the number of
cache lines in the Instruction Buffer 105 between upper and
lower thresholds set by a policy of the Fetcher 103. This is
a form of blind fetching. Saturated cache line counts occur
when the actual cache line count is too large to be repre-
sented in the fields used to hold the cache line count, or as
part of “dummy” predictor value when there is no valid
cache line count available. The Fetcher policy can be set to
balance the need to keep the Instruction Shifter 107A
supplied with cache lines without stalling against the waste
of fetching cache lines that the Instruction Shifter 107A will
never get to because of an intervening transfer. Blind fetch-
ing may also be limited by information about the total size
of the current EBB as specified by the meta-data at the EBB
entry point, as extended by subsequent explicit operations.

The Fetcher 103 can also maintain a fetch cursor in the
Prediction Queue 153, which points to a particular predictor
entry stored in the Prediction Queue 153. When the Fetcher
103 completes storing the cache lines for the predictor entry
pointed to by the fetch cursor in the Instruction Buffer 105,
it sets its cache line address to the target address of the
predictor entry pointed to by the fetch cursor, advances the
fetch cursor such that it points to the next predictor entry the
Prediction Queue 153, and sets the cache line count to the
cache line count value of the next predictor entry. Note that
the cache line address is not set to the target address (or
return address) of the new predictor entry but to the target
address (or return address) of the just-completed predictor
entry. The Fetcher 103 can resume fetching cache lines
according to its new state.

Branch-type predictor entries, call-type predictor entries
and Return-type predictor entries with a resolved return
address contain an address field and cache line count that can
be processed by the Fetcher 103 to derive the cache line
addresses of the cache lines of the current EBB fragment.
The Fetcher 103 can be configured to pause the fetching
operations in any of three circumstances:
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i) when it has completed fetching operations for the last
predictor entry in the Prediction Queue 153 and must
wait for another from the Exit Cache 151;

ii) when the Instruction Buffer 105 is full of lines that
have not yet been consumed by the Instruction Shifter
107 A and the Fetcher 103 must wait for the Instruction
Shifter 107 A to consume a cache line and free up space
in the Instruction Buffer 105; or

iii) when the next predictor entry corresponds to a return
operation with an unresolved return address.

In the last case, the Fetcher 103 can be configured to access
the Return Stack in order to obtain a return address to know
which cache lines to request for fetching. The use of the
Return Stack by the Fetcher 103 is similar to the use of the
call stack data structure by the Prefetcher 175. There is one
significant difference between the addresses stored by the
Return Stack as compared to the call stack data structure.
Specifically, the addresses stored in the Return Stack and
used by the Fetcher 103 are code byte addresses as needed
by the Instruction Shifter 107A. In contrast, the addresses
stored in the call stack data structure and used by the
Prefetcher 175 are cache line addresses as determined by the
EBB entry address as modified by the line counts of sub-
sequent fragments in the same EBB. The Fetcher 103 itself
needs only cache line addresses, like the Prefetcher 175, but
true byte addresses are needed by the Instruction Shifter
107A in order to locate and isolate the start of an instruction
within a cache line. Because it is easy to determine a cache
line address from a given byte address, it is convenient for
the Return Stack to store the return addresses as true byte
addresses that can be used by both the Fetcher 103 and the
Instruction Shifter 107A.

When processing a predictor entry that corresponds to a
return operation with an unresolved return address, there are
two possibilities: the corresponding call operation has
already been shifted by the Instruction Shifter 107A and the
return address is on the Return Stack; or the corresponding
call operation is predicted by a predictor entry that is stored
in the Prediction Queue 153 and has not yet been consumed
by the Instruction Shifter 107A. In order to address these
possibilities, the state information maintained by the Fetcher
103 can include a count of the net number of predictor
entries corresponding to the call operations that it has
processed, incrementing this count with the processing of
each call-type predictor entry and decrementing this count
with the processing of each return-type predictor entry.
Similarly, the Decode Control Logic 155 can be configured
to maintain a similar count of the net number of call-type
predictor entries that it has processed. If these counts are
equal then the Instruction Shifter 107A has already shifted
the call operation corresponding to the Fetcher’s return-type
predictor entry, and the required return address is on the top
of the Return Stack. If such count as maintained by the
Fetcher 103 is larger than the corresponding count main-
tained by the Decode Control Logic 155, then there must be
a call-type predictor entry stored in the Prediction Queue
153, and the Fetcher 103 can be configured to wait for the
Decode Control Logic 155 to process this call-type predictor
entry. If such count as maintained by the Fetcher 103 is less
than the corresponding count maintained by the Decode
Control Logic 155, then the return address corresponding to
the Fetcher’s return-type predictor entry is in the Return
Stack at a distance down from the top equal to the difference
between Decode Control Logic and Fetcher counts. Once
the Fetcher 103 is able to obtain the return address from the
Return Stack, it can use that return address to initiate the
fetch process for the cache lines at the return address. In
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addition, the Fetcher 103 can resolve the return-type pre-
dictor entry by updating the address field of the predictor
entry with the correct return address, as if the prediction
were for a branch (for which the key supplies the target
address). Eventually the resolved return-type predictor entry
will reach the Decode Control Logic 155, which will use the
updated target address to obtain cache lines from the Instruc-
tion Buffer 105 where the fetch operations had placed them.

In processing a predictor entry, the Fetcher 103 requests
that one or more cache lines be brought from the L1
Instruction Cache 117 (or from elsewhere in the Memory
System 101) into the Instruction Buffer 105. The Instruction
Buffer 105 and the Fetcher 103 are configured to avoid
overwriting any cache lines that have not yet been consumed
by the Instruction Shifter 107 A (but will be consumed in the
future). The Instruction Buffer 105 can also be configured to
deal with the situation in which a single predictor entry
points to more cache lines than can be stored in the Instruc-
tion Buffer 105, in which case it can be configured to act like
a streaming buffer between the Instruction Shifter 107A and
the L1 Instruction Cache 117.

The Fetcher 103 can also be configured to check the
Instruction Buffer 105 before sending a memory request to
the memory hierarchy that stores instructions. If the
requested cache line is already in the Instruction Buffer 105,
then the Fetcher 103 has detected a loop that fits in the
Instruction Buffer 105. The Fetcher 103 can then cease
issuing additional memory requests, which would be redun-
dant to the cache lines already in the Instruction Buffer 105,
until the loop exits, typically by a mispredict unless the loop
itself was predicted as described elsewhere.

A predictor entry can be output from the Prediction Queue
153 to the Decode Control Logic 155 when the Instruction
Shifter 107 A completes shifting the predicted last instruction
from the current EBB fragment. Depending on the imple-
mentation, the Decode Control Logic 155 may also access
the address field (target address or return address) of the
predictor entry at the head of the Prediction Queue 153 even
before the Instruction Shifter 107A completes shifting the
current EBB fragment. That address field (target address or
return address) indicates the next cache line to use after the
last cache line of the current EBB fragment. By accessing
the Prediction Queue 153 early, the Decode Control Logic
155 may be able to get a few cycles head start on requesting
that cache line from the Instruction Buffer 105 for supply to
the Instruction Shifter 107A. This can be important when the
first instruction of an EBB crosses a cache line boundary and
the Instruction Shifter 107A needs two full new cache lines
before it can begin shifting.

The Fetcher 103 runs ahead of the Decode Control Logic
155 in processing the predictor entries read-out from the
Prediction Queue 153. Working from the most recent toward
the most future predictor entries in the Prediction Queue
153, it issues memory requests to fetch cache lines from the
memory hierarchy into the Instruction Buffer 105 where the
Instruction Shifter 107A can find them when it catches up.
To issue these requests, the Fetcher 103 can derive the target
address of the target EBB fragment and the cache line count,
both of which are available from the predictor entry in the
predictor queue (expect for return-type predictor entries).

For return-type predictor entries, the predictor entry can
contain an address field pointing to the offset of the next
EBB fragment after the call site. Unlike the address fields
that are part of branch-type and call-type predictor entries,
this address field does not represent a target address but it
used by the Fetcher 103 in conjunction with the Return Stack
data to derive the cache line address for the next EBB
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fragment as described herein. Note that such cache line
address, while suitable for fetching, is not a byte address as
needed by the Decode Control Logic 155 in controlling the
Instruction Shifter 107A. While the cache line count and
instruction count of the preceding call-type predictor entry
are known, the byte address of the subsequent return opera-
tion is unknown until the corresponding call operation is
consumed by the Instruction Shifter 107A. The Decode
Control Logic 155 knows that the exit point of the current
EBB fragment is a call operation when the predictor entry
for the current EBB fragment is a call-type predictor entry
(i.e., either an inner-call or outer-call kind of predictor). If
the predictor kind is an inner-call type, then the return
address of the return operation is the address of the instruc-
tion that included the corresponding call operation. If the
predictor kind is an outer-call type, then the return address
of the return operation is the address of the next instruction
following the instruction that included the corresponding
call operation. In either case, the Decode Control Logic 155
computes the return address in order to control the shifting
performed by the Instruction Shifter 107A. Furthermore, the
return address as computed by the Decode Control Logic
155 is saved in the Return Stack and used by the Fetcher 103
to update return-type predictions in the Prediction Queue
153 so that the cache lines after the return point can be
fetched into the Instruction Buffer 105 for processing by the
Decode Control Logic 155 in controlling the Instruction
Shifter 107A.

It is of course possible for the Fetcher 103, running ahead
of'the Decode Control Logic 155 in processing the predictor
entries stored in the Prediction Queue 153, to process a
return-type prediction before the Decode Control Logic 155
has processed the call-type predictor entry that enters the
EBB of such return-type predictor. If this happens the
Fetcher 103 can be configured to stall and wait for the
Decode Control Logic 155 to process the corresponding
call-type predictor entry. If the called function is very brief,
the Instruction Shifter 107 A may need to stall until the cache
lines for the return point arrive at the Instruction Buffer 105.
In this case, the Fetcher 103 can continue working up the
Prediction Queue 153 issuing requests even with the Instruc-
tion Shifter 107A stalled, at least until it processes another
unresolved return-type prediction.

The stalling of the Fetcher 103 can be avoided in some
cases if the Prefetcher 175 annotates return-type predictions
with the cache line addresses that it uses for post-return
prefetches, or equivalently with the cumulative line counts
that can be used to compute those line addresses. However,
the Prefetcher 175 might not be able to prefetch through all
return-type predictions so some return-type predictor entries
in the Prediction Queue 153 can possibly lack cache line
addresses, forcing the Fetcher 103 to stall until the corre-
sponding call operation is processed by the Decode Control
Logic 155 as described above.

In the presence of mispredicts, it is possible for the chain
of predictor entries stored in the Prediction Queue 153 to
include one or more return-type predictor entries that did not
have corresponding call-type predictors earlier in the chain.
In such a case, the count of the net number of call-type
predictor entries as maintained by the Fetcher 103 and the
Decode Control Logic 155 will never become equal, a
return-type predictor will never be resolved, and the Fetcher
103 will stall when processing the unresolved return-type
predictor. Eventually the Decode Control Logic 155 will
catch up and process the unresolved return-type predictor
entry. At that point the corresponding call must be on top of
the Return Stack. Consequently the two counts can simply
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be set equal, the return-type predictor entry can be updated
with the return address normally, the Fetcher 103 can be
released to fetch the cache lines of the return-type predictor
entry and continue working up the Prediction Queue 153,
and the Decode Control Logic 155 can control the Instruc-
tion Shifter 107A to obtain the cache line containing the
return address from the Instruction Buffer 105.

The Fetcher 103 can be configured to avoid issuing fetch
requests that might cause the Instruction Buffer 105 to
overflow. A simple way to avoid such overflow is to main-
tain a count of the number of free spaces in the Instruction
Buffer 105, incremented when a cache line is obtained by the
Instruction Shifter 107A and decremented when the Fetcher
103 issues a fetch request. A somewhat more complex
strategy can take advantage of the expected latency of fetch
requests and the expected number of cache lines obtained by
the Instruction Shifter 107 A in that interval. The Fetcher 103
can then run ahead of actual capacity in the expectation that
capacity will be available when the cache lines actually
arrive in the Instruction Buffer 105. Such an approach
potentially is more economical of space in the Instruction
Buffer 105, but must deal with occasional overflows and
re-fetches.

Fetch requests can miss in the cache hierarchy if they
would fault or trigger paging. Such an event can be config-
ured to stall the operation of the Fetcher 103 under the
assumption that the prediction leading to the event is a
mispredict.

As described herein, the Instruction Shifter 107A operates
under control of the Decode Control Logic 155 to isolate
instructions from cache lines obtained from the Instruction
Buffer 105 and pass the isolated instructions to subsequent
sub-stages of the Decode Stage 107. In one embodiment, the
Instruction Shifter 107A can be configured to isolate one
instruction per machine cycle, and the instructions are not
longer than a cache line. In this case, the Instruction Shifter
107A needs to shift at most two concatenated cache lines to
isolate an instruction. The shift count that is used to isolate
a given instruction can be derived from a field at a fixed
position in every instruction. The Decode Control Logic 155
can be configured to maintain state to indicate how far it has
gotten in the current EBB fragment that it is working on.
Such state information can include one or more of the
following:

i) the address of the next instruction to be shifted;

ii) the key of the current EBB fragment;

iii) a count of the number of cache lines that have been
obtained by the Instruction Shifter 107A from the
Instruction Buffer 105, and

iv) a count of the number of instructions that have been
isolated from the most recently obtained cache line.

The isolated instructions can be annotated with this state as
of when they were isolated. The instructions can retain this
annotation as they pass through subsequent subs-stages of
the Decode Stage 107 and follow on issue and execution.
Such annotation can be used for mispredict recovery as
described elsewhere.

In normal operation, the Decode Control Logic 155
utilizes the predictor entry obtained from the head of the
Prediction Queue 153 to guide the shifting operations of the
Instruction Shifter 107A. When it starts work on a predictor
entry, the Decode Control Logic 155 saves the cache line
count and instruction count of the predictor entry into local
state and controls the Instruction Shifter 107A to obtain the
cache line of the predicted target address and (usually) a
second cache line from the Instruction Buffer 105. The
second cache line can be omitted when the predictor entry
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indicates that the EBB fragment will be exited by an
instruction wholly contained in the first cache line. Each
time the Instruction Shifter 107A isolates an instruction, the
instruction counter of the state information maintained by
the Decode Control Logic 155 is incremented. Each time the
Instruction Shifter 107A requests (or obtains) a cache line
from the Instruction Buffer 105, the cache line counter of the
state information maintained by the Decode Control Logic
155 is incremented and the instruction counter is zeroed.
When the cache line counter and the instruction counter of
the state information as maintained by the Decode Control
Logic 155 equals to the cache line count and instruction
count of the current predictor entry, then the current predic-
tor entry has been fully shifted and the Decode Control
Logic 155 can obtain the next predictor entry from the head
of the Prediction Queue 153 and then repeat the process.

The Decode Control Logic 155 can be configured to carry
out special behavior when both the cache line count and the
instruction count of the current predictor entry are saturated,
i.e. have maximal values. In the case of a saturated cache
line count not accompanied by a saturated instruction count,
the Decode Control Logic 155 can treat the predictor entry
as a normal prediction and the saturated line count as an
exact cache line count. In the case of a saturated instruction
count that is not accompanied by a saturated cache line
count, the Decode Control Logic 155 can be configured to
isolate all instructions of the last cache line of the corre-
sponding EBB fragment that do not run over into the
following cache line. In the case that both the cache line
count and the instruction count of the current predictor entry
are saturated, the Decode Control Logic 155 can be config-
ured to control the Instruction Shifter 107A to continue
obtaining cache lines from the Instruction Buffer 105 and
isolating the instructions from the obtained cache lines
indefinitely until stopped by a mispredict. As described
herein, the saturated cache line count and the saturated
instruction count can be used when the actual cache line
count or the instruction count exceeds the capacity of the
predictor fields used to store them. Saturation of both counts
is also used in dummy predictions used when no prediction
is available, such as after a mispredict.

If the Prediction Logic 111 is working well, then the
Instruction Shifter 107 A will obtain an uninterrupted stream
of cache lines from which it will isolate an uninterrupted
stream of instructions. However, if the Instruction Buffer
105 has fallen behind the Instruction Shifter 107 A, then the
Instruction Buffer 105 might not have the next cache line at
hand and is waiting for it to arrive from the memory
hierarchy. When this happen, the Instruction Shifter 107A
can be configured to stall, introducing a bubble into the
Decode Stage 107. When the desired cache line arrives in the
Instruction Buffer 105, it can be obtained by the Instruction
Shifter 107A for shifting, but the bubble can remain in the
later stages of decoding. Under some circumstances this
bubble can be squeezed out, most commonly by issue cycles
that contain an elided no-op, but in general the bubble will
reach the final sub-stage of the Decode Stage 107 and would
issue as if it were an instruction and not a bubble. The issue
stage of the CPU can be configured to recognize the pres-
ence of the bubble and stall issue until eventually a valid
decoded instruction reaches the issue stage, whereupon
execution resumes.

The Instruction Buffer 105 may fail to provide a cache
line for other reasons than delay in the memory hierarchy.
For example, a fetch request can cause a fault, perhaps
because of a protection violation, or can trigger paging. In
this case, the Fetcher 103 can be configured to return a
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“dummy” cache line to the Instruction Buffer 105. The
“dummy” cache line can be marked with the nature of the
problem. When the Instruction Shifter 107 A attempts to shift
the “dummy” cache line, the Instruction Shifter 107A can be
configured to not shift but instead produce a “dummy”
instruction with the same marking. This “dummy” instruc-
tion can works its way through the Decode Stage 107 until
it reaches the issue stage, which cannot issue because it does
not have a real instruction. Instead the attempted issue of the
“dummy” instruction can trigger an untaken mispredict, as
if a transfer had been predicted for the prior cycle but did not
happen. As described herein, this mispredict will restart the
Fetcher 103 and the Instruction Shifter 107A with the
fall-through address (where the “dummy” instruction would
have been) as the target address. The first fetch request after
a mispredict will not ignore faults and paging, so whatever
had been the problem with the cache line before will this
time cause the machine to take notice and take a fault or
paging trap.

Return Stack

As described herein, the Return Stack stores addresses
corresponding to call operations in order to provide address
information when returning from such call operations. Note
that such call operations have not necessarily been executed
yet as the instruction containing a call operation might still
be in flight in the Decode Stage 107. Consequently, the stack
information that a return-type predictor entry will need must
be saved by the prediction of a call operation, not by the
execution of a call operation. This information is saved onto
the Return Stack. Note that while the cache line count and
instruction count of a call-type predictor entry are known,
the byte address of the subsequent return operation is
unknown until the corresponding call operation is consumed
by the Instruction Shifter 107A. The Decode Control Logic
155 knows that the exit point of the current EBB fragment
is a call operation when the predictor entry for the current
EBB fragment is a call-type predictor entry (i.e., either an
inner-call or outer-call kind of predictor). If the predictor
kind is an inner-call type, then the return address of the
return operation is the address of the instruction that
included the corresponding call operation. If the predictor
kind is an outer-call type, then the return address of the
return operation is the address of the next instruction fol-
lowing the instruction that included the corresponding call
operation. In either case, the Decode Control Logic 155
computes the return address in order to control the shifting
performed by the Instruction Shifter 107A. Furthermore, the
return address as computed by the Decode Control Logic
155 is saved to the Return Stack.

In one embodiment, the Return Stack is a LIFO data
structure that logically overlaps the execution call stack. The
Return Stack size logically is the size of the call stack (all
functions that have been entered but not yet exited by the
program), plus an extension that is bounded by the cycle
depth of the Decode Stage 107. The extension is needed
because that is the maximum number of machine cycles that
might occur between the processing of call-type predictor
entries by the Decode Control Logic 155 and call execution
(which would have left an activation frame for the call with
the return information on the call stack). Each one of these
machine cycles might possibly contain a call operation that
needs its information saved as part of the Return Stack.
Logically, the extension extends the call stack into the future
by a few machine cycles. Once a call operation (whose
information was placed into the extension by the Decode
Control Logic 155) is executed, then the return address
information is also on the call stack, and the return address
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information for the call operation stored as part of the
extension can be discarded. Thus the call stack and the
extension together logically define the Return Stack.

The Fetcher 103 can be configured to query the Return
Stack to resolve return-type predictor entries and update
them with the correct return address. The depth of the query
is the number of in-flight call-type predictor entries that
could have been seen by the Fetcher 103 but not yet by the
Decode Control Logic 155. The maximal value of this
difference is equal to the length of the Prediction Queue 153,
and occurs when the entire queue is full of return-type
predictor entries and the Fetcher 103 has reached the final
one. This is a relatively small number, albeit larger than the
number of stages between the Instruction Shifter 107A and
issue. Consequently, while the Return Stack can be imple-
mented as comprising the call stack and an extension as
described, it can also be implemented as a structure entirely
separate from the call stack, which is likely to be a simpler
implementation as it avoids queries into the call stack.

In the event of a mispredict the call-stack-and-extension
implementation of the Return Stack discards any entries in
the extension. These entries would reflect call-type predictor
entries in the Prediction Queue 153, of which there are none
because the Prediction Queue 153 is emptied at a mispredict.
In the event of a mispredict in the separate implementation
of the Return Stack, only those Return Stack entries that
reflect call-type predictor entries that were in the Prediction
Queue 153 should be discarded. Those that reflect actually
executed calls whose frames are still in the call stack must
be retained.

The Return Stack can be configured such that it keeps up
with the peak prediction entry processing rate (e.g., one
predictor entry per machine cycle) of the Prediction Queue
153, Fetcher 103, Decode Control Logic 155 and Instruction
Shifter 107A.

Mispredict Recovery

Mispredicts can have two forms:

i) a taken mispredict, in which an executed conditional
transfer operation (predicted as not-taken) unexpect-
edly caused a transfer; and

ii) an untaken mispredicts, in which an executed condi-
tional transfer operation (predicted as taken) unexpect-
edly did not cause a transfer.

Unconditional transfers cannot mispredict. These two kinds
of mispredicts require different handling.

In the event of a taken mispredict, the Decode Control
Logic 155 has no corresponding predictor entry to work
from and the chain of predictions that had been feeding it are
useless. In this case, the Mispredict Recovery Logic 159 can
be configured to discard the internal state of the Decode
Stage 107 and unwind any instructions that have been issued
down the wrong path. The Prediction Queue 153 is emptied,
as is the part of the Return Stack that reflects calls in flight
in the Decode Stage 107. Furthermore, entries reflecting
actually executed calls are left intact. The state information
(cache line counter and instruction counter) maintained by
the Decode Control Logic 155 is cleared. The current
instruction address and the key for the current EBB fragment
is set to the target address of the taken mispredicted opera-
tion, which is stored in the program counter 115. The
Decode Control Logic 155 is supplied with a “dummy”
predictor entry, which has a predefined “null” target address
and a “null” kind and has saturated cache line count and a
saturated instruction count. Such “dummy” predictor entry
causes the Decode Control Logic 155 to control the Instruc-
tion Shifter 107A to continue obtaining cache lines from the
Instruction Buffer 105 and isolating instructions from the
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obtained cache lines indefinitely until a mispredict occurs.
Furthermore, the contents of the Instruction Buffer 105 can
be left intact, but may be overwritten by future fetches. If
possible, outstanding fetches that have not yet reached the
Instruction Buffer 105 may be quashed, or alternatively the
fetches may be permitted to complete to the Instruction
Buffer 105. The state information of the Fetcher 103 is
cleared, and the fetch cache line address is set to the cache
line containing the target address of the taken mispredicted.
The cache line count is also set to the saturated value, which
causes the Fetcher 103 to continue to fetch lines indefinitely,
cooperating with the Instruction Buffer 105 to keep the
number of cache lines awaiting the Instruction Shifter 107A
between high- and low-thresholds set by the policy of the
Fetcher. This is the same behavior as is used when there is
a valid prediction that has overflowed the cache line count.

Furthermore, the Mispredict Recovery Logic 159 can
supply the new key (the target address of the taken mispre-
dicted operation) to the Exit Cache 151 to find a prediction
for the new EBB fragment. This stops the chain currently
being followed by the Exit Cache 151 (and possibly by the
Prefetcher 175, Prediction Queue 153, Fetcher 103 and the
Decode Control Logic 155 if such predictor entries were
active). If the Exit Cache 151 has no matching predictor
entries for the new key, then the Exit Table 113 will be
queried with the new key. If no prediction is found in either
place, then the Exit Cache 151 will transfer a “dummy”
predictor entry to the Prediction Queue 153, which is passed
to the Fetcher 103 and the Decode Control Logic 155 for
processing. The processing of the “dummy” predictor entry
by the Decode Control Logic 155 will control the Instruction
Shifter to shift indefinitely until the next mispredict. Note
that the Decode Control Logic 155 does not count down the
counts for the “dummy” predictor entry similar to a regular
predictor entry. Instead, the count values remain saturated
regardless of the number of instructions shifted. Conse-
quently shifting after the taken mispredict can shift more
cache lines or instructions than are representable in a pre-
dictor entry. This is the same behavior as for regular pre-
dictions that overflow the representation of counts in a
predictor entry.

If a predictor entry is found that matches the new key in
either the Exit Cache 151 or Exit Table 113, then that
predictor entry starts a new chain, which is entered into the
Exit Cache 151 if from the Exit Table 113. The new chain
is forwarded to the Prediction Queue 153, which was
emptied when the taken mispredict was encountered. If the
new chain includes a return-type predictor entry, it can be
resolved normally and updated with the return address from
the Return Stack. The new predictor chain replaces the
“dummy” predictor entry that had been given to the Fetcher
103 and the Decode Control Logic 155 when the taken
mispredict was encountered.

The time required before the Decode Control Logic 155
can start the Instruction Shifter 107A using the new chain
after a taken mispredict depends on how long it takes the
Fetcher 103 to obtain the cache lines containing the target
address of the taken mispredicted operation. This time can
be highly variable. It can happen that cache lines and
instructions shifted under control of the “dummy” predictor
entry overlap the cache lines and instructions called for in
the new chain. In this case, the processing of the new chain
in Decode Control Logic 155 can continue shifting as if
there had been no taken mispredict at all. However, it can
also happen that the Instruction Shifter 107A has overrun
beyond the number of cache lines and instructions called for
in the new chain. In fact, a second taken mispredict can be
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detected. When a second taken mispredict is detected, then
the entire above sequence will be repeated, with a second
“dummy” predictor entry. In this case, the prediction mecha-
nism can be configured to ensure that an in-flight predictor
entry does not replace the wrong “dummy” predictor entry.
This can be accomplished by associating a sequence number
to each “dummy” predictor entry along with the request for
a new chain and the corresponding predictor entry. The
predictor entry can be used to replace a “dummy” predictor
matching in the Decode Control Logic 155 only when
sequence number of the predictor entry matches the
sequence number of the “dummy” predictor entry that is
currently being processed by the Decode Control Logic 155.

In addition, when a taken mispredict is detected, the
Mispredict Recovery Logic 159 can also be configured to
attempt to improve the quality of the predictor entries stored
by the Exit Table 113 and the Exit Cache 151 such that the
taken mispredict is less likely to occur should the corre-
sponding EBB fragment be executed again later. In this case,
the Mispredict Recovery Logic 159 can construct a new
predictor entry that reflects what the failing prediction
should have been but wasn’t, using information from the
Update Queue 157 that annotated the instruction that caused
the taken mispredict. In the new predictor entry, the next-key
(target address) is the computed address of the unexpected
taken operation and its kind is the kind of transfer actually
taken; both are available from the hardware operation that
executed the transfer. In addition, the new predictor entry
can contain what should have been the cache line count and
instruction count for the EBB fragment whose predicted exit
failed. Note that these are the counts and key of the EBB
fragment that the unexpected transfer was from, not of the
EBB fragment that the unexpected transfer was to. Both the
cache line count and the instruction count as well as the key
are known to the Decode Control Logic 155 as it worked on
the EBB fragment whose predicted exit failed. The key of
the new predictor entry can be derived from the entry
address of the target EBB of the taken mispredicted opera-
tion, while the cache line count and the instruction count can
be derived from the counts computed during operation of the
Instruction Shifter 107A as it processed the EBB fragment
that the unexpected transfer was from. Note that the key and
counts of the new predictor entry are based on the operation
of the Instruction Shifter 107A at shift time, while the taken
mispredict is detected (and the new prediction must be
created) at execution time, several cycles later. Thus, the
Mispredict Recovery Logic 159 cannot use the then-current
key and counts because they are out of date with respect to
the actually failing operation. Instead, the Instruction Shifter
107A can be configured to annotate each instruction it
produces with information that says “if this instruction
causes a taken mispredict, then here is its key and what the
counts should have been to have made this instruction be a
predicted exit.” This annotation remains attached to the
instruction and its operations as it works its way through the
Decode Stage 107 to issue and execution, and is available to
the transfer operation that executes the unexpected transfer,
which triggers a taken mispredict and constructs the new
predictor entry as described herein.

The new predictor entry (including its key) can be sup-
plied to the Exit Table 113. The Exit Table 113 uses the key
of the new predictor entry to update its quality information
for the prediction at that key. If there is no prediction for that
key (as detected by the check bits in the Exit Table 113), then
the new predictor entry is simply inserted into the Exit Table
113 with initial quality information set by table policy. If a
predictor entry for the key does exist in the Exit Table 113,
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its quality information is adjusted downward because it had
led to a mispredict. If such downward adjustment causes the
quality information to fall below a policy-set threshold, then
the previous predictor entry for that key is replaced by the
new predictor key. The Exit Cache 151 is also notified to
update or replace its predictor entry for that key if it has one.
This update mechanism lets predictions track program
behavior as it changes over time during execution.

The Mispredict Recovery Logic 159 can also be config-
ured to update predictor entries stored in the Exit Table 113
based on the new predictor entry. In this case, the Mispredict
Recovery Logic 159 can apply the update policy itself,
choosing to send only an update to the quality rating of the
appropriate predictor entry or to send the entire new pre-
dictor entry to the Exit Table 113 and possibly the Exit
Cache 151. This optimization potentially saves power and
Exit Table/Exit Cache query cycles.

An untaken mispredict occurs when an operation pre-
dicted to exit does not, and instead control falls to the next
sequential instruction. In this case, the Instruction Shifter
107A, following the path of the erroneous prediction, will
have filled the decode pipeline with instructions from the
expected path, which the mispredict exposes as unneeded.
Much of the recovery from an untaken mispredict is com-
mon with a taken mispredict, discussed elsewhere. This
discussion only summarizes the common behavior, while
explaining in greater depth where the untaken mispredict
differs.

Similar to the processing of taken mispredicts, the Mis-
predict Recovery Logic 159 can be configured to invalidate
the state of Decode Stage 107, the Instruction Shifter 107A,
the Prefetcher 175, the Fetcher 103 and the Decode Control
Logic 155 when an untaken mispredict is detected. The
contents of the Exit Cache 151 and the Instruction Buffer
105 can be left intact, although they may be overwritten
when the processing of the new prediction chain by the
Fetcher start. Furthermore, the Decode Control Logic 155 is
supplied with the fall-through address and a “dummy”
predictor entry, which has a null kind and has saturated
cache line count and a saturated instruction count, which
initializes the shifting operations of the Instruction Shifter
107A into a state as it was just prior to taking the erroneous
transfer (except for having a “dummy” predictor rather than
an exhausted predictor entry) and can resume isolating
instructions at that point. The fall-through address and the
“dummy” predictor entry are also passed to the Fetcher 103
which controls the Fetcher 103 to resume fetching cache
lines at the fall-through address into the Instruction Buffer
105.

Whereas in a taken mispredict the prediction chain is
restarted using the actual target address as a key, in an
untaken mispredict the chain is restarted with the alternate
key for the key that led to the mispredict. The alternate key
is aregular key (i.e. the address of the entry point of an EBB)
arithmetically modified in a consistent way that cannot cause
an alternate key to collide with a valid regular key. Methods
for doing the modification are discussed elsewhere. To
determine the alternate key, the Mispredict Recovery Logic
159 can employ the regular key of the predictor entry that
failed. Failure is detected at issue and execute time, when the
operation that was expected to transfer did not do so. Thus,
the Mispredict Recovery Logic 159 cannot use the then-
current key because it is out of date with respect to the
actually failing operation. Instead, the Instruction Shifter
107A can be configured to annotate each instruction it
produces with information that says “if this instruction
causes an unexpected untaken mispredict, then here is its
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alternate key.” This annotation remains attached to the
instruction and its operations as it works its way through the
Decode Stage 107 to issue and execution, and is available to
the operation that executes the unexpected untaken mispre-
dict, which triggers an untaken mispredict and the process-
ing as described herein.

In the case of the untaken mispredict, the Mispredict
Recovery Logic 159 can be configured to use the alternate
key for the EBB fragment to restart the prediction chain, and
eventually a new stream of predictor entries from the Exit
Table 113 or Exit Cache 151 will start to arrive in the
Prediction Queue 153. In doing so, the Mispredict Recovery
Logic 159 supplies the alternate key (the fall-through
address of the untaken mispredicted operation) to the Exit
Cache 151 to find a prediction for the new EBB fragment.
This stops the chain currently being followed by the Exit
Cache 151 (and possibly by the Prefetcher 175, Prediction
Queue 153, Fetcher 103 and the Decode Control Logic 155
if such predictor entries were active). If the Exit Cache 151
has no matching predictor entries for the alternate key, then
the Exit Table 113 will be queried with the alternate key. If
no prediction is found in either place, then the Decode
Control Logic 155 will control the Instruction Shifter 107A
to shift indefinitely until the next mispredict. Note that the
Decode Control Logic 155 does not count down the counts
for the “dummy” predictor entry similar to a regular pre-
dictor entry. Instead, the count values remain saturated
regardless of the number of instructions shifted. Conse-
quently shifting after the untaken mispredict can shift more
cache lines or instructions than are representable in a pre-
dictor entry. This is the same behavior as for regular pre-
dictions that overflow the representation of counts in a
predictor entry.

As with taken mispredicts, the first predictor entry cor-
responding to the alternate chain to arrive in the Prediction
Queue 153 replaces the “dummy” predictor entry. The
processing of the Decode Control Logic 155 may have
already overrun the first predictor entry, or even triggered a
second mispredict. Both are handled in the same way as for
taken mispredicts.

Eventually execution from the fall-through address will
end with a successful transfer operation out of the current
EBB, and a new predictor entry can be constructed and
passed with both the regular and alternate keys to the Exit
Table 113. The Exit Table 113 can be queried with the
regular key to locate the matching predictor entry. Normally,
it is not possible for the matching predictor entry to be
vacant (check bits fail) in this case but if that should happen
then it is replaced by the new predictor entry. Otherwise, the
quality information of the matching predictor entry is down-
graded. If the downgrade causes the quality information of
the predictor entry to drop below the predefined threshold,
then the regular predictor entry is replaced by the new
predictor entry that follows the fall-through path. If the
downgrade does not drop the regular prediction below the
predefined threshold, then the Exit Table 113 can be queried
with the alternate key. If the alternate prediction had in fact
correctly predicted the fall-through path of the untaken
mispredict, then the quality information of the predictor
entry for the alternate key can be upgraded. Otherwise, the
quality information of the predictor entry for the alternate
key can be downgraded, and if below threshold it can be
replaced by the new predictor entry. Thus quality informa-
tion can be changed for both the regular and alternate
predictions, but only at most one of the regular and alternate
predictions will be replaced. The update may be optimized
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as for taken mispredicts if the update records carry the
quality information with them.
Bulk Load of Prediction Entries

The predictor entries as maintained in the Exit Table 113
and Exit Cache 151 are based on experience learned as
actual program behavior is compared with predicted behav-
ior. The CPU 102 an also employ a hardware-based mecha-
nism that provides bulk loading of predictor entries into the
Exit Table 113 (and for filling the Exit Cache 151 with
predictor entries) in order to improve prediction perfor-
mance when processing cold code that the CPU has yet to
process.

In this case, the tool chain that produces executable code
for execution on the CPU 102 can be configured to identify
every EBB and control transfer operation in the executable
code of a program. Specifically, the tool chain can employ
heuristics, profiling, or other means to construct a prediction
set for each given function in the executable code of the
program. The prediction set provides predictor entries that
constitute chains for all expected paths through the given
function. The predication entries pertaining to a given func-
tion can be sorted based on the closeness (in virtual address
space) of the predictor entries in an expected prediction
chain starting at the entry address of the given function.
These prediction sets can be stored as part of a load module
(or program image) as shown in FIG. 11 (or as part of a file
that is associated with the load module file) that is processed
by a program loader that loads the load module (or parts of
the load module) into the memory hierarchy of the CPU for
execution by the CPU. The prediction sets can be arranged
as part of the program load module (or possibly as part of a
file that is associated with the load module file) such that is
easy to locate the prediction set for a function given the entry
address of the function. The operating system saves the
memory address of the prediction sets of the load module
when it maps the load module into the address space as part
of'loading a new program. This prediction structure address
is available to a hardware-based prediction bulk loader (or
prediction bulk loader)

Whenever the executing program has a taken mispredict
on a call operation to a function and both the Exit Cache 151
and the Exit Table 113 have no prediction for the key that is
the entry address of that function (i.e., a check bits failure),
the missing key can be passed to the prediction bulk loader.
The prediction bulk loader reads the prediction set for the
called function from the memory hierarchy and walks the
loaded predictor entries and enters them into the Exit Table
113 (and possibly adds one or more of such entries into the
Exit Cache 151). The walking order corresponds to the sort
order used by the tool chain when it created the prediction
set, so the first predictor entries entered into the Exit Table
113 (and possibly added into the Exit Cache 151) will be
those that are, in a prediction chain sense, closest to the entry
point of the function and so are the ones most likely to be
needed early as the function is executed.

The bulk loaded predictor entries can be of mixed quality.
Predictor entries for unconditional control transfer opera-
tions will of course be predicted perfectly, but others may be
little better than random. However the average will be
significantly better than no cold code predictions at all, and
will improve with execution experience. Bulk loaded pre-
dictor entries can be loaded through the normal data hier-
archy, and so the predictor entries will be cached like other
data from memory. Consequently the very first time that a
function is called its prediction loading will suffer full
memory latency while being loaded. This is not likely to be
a source of delay because the corresponding code must also

10

15

20

25

30

35

40

45

50

55

60

65

44

be loaded from the load module in memory. However, the
predictor set for the function is typically smaller than code,
so while both the predictor entries and code load slowly, the
loading of the predictor entries for the function will com-
plete first and can start prefetching down the initial chain of
predictor entries for the function. This prefetching is con-
current with actual fetch and execution and will gain
because the prefetch can have many requests in flight while
fetch is largely a sequential process.

The CPU can perform context switching, which is a
process of storing and restoring the state (context) of a
process or thread so that execution can be resumed from the
same point at a later time. Context switching enables mul-
tiple processes to share a single CPU and is an essential
feature of a multitasking operating system. A context switch
can involve clearing the Exit Table 113 (and possibly the
Exit Cache 151) and configuring the bulk prediction loader
to reload the Exit Table 113 (and possibly the Exit Cache
151) with the predictor entries for the resumed process. The
prediction entries and the code of any called function of the
resumed process will likely still be in the cache hierarchy so
the prediction bulk loader may not need to reload such
predictor entries from main memory. The bulk loading of
predictor entries into the memory hierarchy will bring the
predictions to the Exit Table 113 (and possibly the Exit
Cache 151) without requiring a lot of warming mispredicts.
The hoisting operations of the Prefetcher 175 can bring
needed cache lines into the top level cache for rapid fetch.

Configurations with bulk loading of prediction entries
may also be configured to write back predictor entries into
the memory hierarchy as well as into the program load
module (or associated file) for predictor entries that were
updated in the Exit Table 113 (and possibly the Exit Cache
151) based on actual program experience. The written-back
updates of the predictor entries can be stored in cache,
giving better quality bulk-load predictions when the Exit
Table is next cleared and then re-loaded due to a context
switch. The program load module (or the associated file) can
be configured as writable and the updated predictor entries
can be written back to the program load module (or asso-
ciated file) for persistent storage such that the next time the
program is run the bulk load predictions will reflect the
experience with the first and later executions. In effect, the
first and subsequent runs of the program acts like a profiler
to improve the prediction quality. If the program load
module (or associated file) is not configured as writable, then
the updated predictor entries cannot be saved into the
program load module (or associated file). However, they still
can be written back to cache. Such updated predictor entries
can possibly be specially marked as cache-resident only
values and not written on to main memory to avoid an
operation system diagnostic.

Deferred Branch Operations

The instruction set architecture of the CPU 102 can
support deferred control type operations, such as deferred
branch operations. These are branch-type control transfer
operations that have a machine cycle count argument in
addition to their other arguments. The branch target address
and predicate are evaluated when the operation is issued, but
the control transfer is not actually completed (retired) as
taken (if permitted by the predicate) based on the machine
cycle count argument. When the transfer is completed as
taken, the target address key of the deferred branch is
forwarded to the Exit Cache 151 where it is checked to see
if a matching prediction entry is found. If found, the logic
assumes that the predictor entry for the deferred branch is
already part of a predicted chain and no further action is
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taken. If not found in the Exit Cache 151, and the Exit Cache
151 is not currently working on a prediction chain, then the
key is used to start a new chain. The new chain is stored in
the Exit Cache 151 and allows the Prefetcher 175 to get a
head start on predictions and instruction cache lines that will
be of use in the future, although the sequence of execution
that will lead to those cache lines is unknown when the
notice is received.

The CPU can occasionally have machine cycles in which
it has nothing to do but wait for an already issued operation
to complete and retire. Such wait machine cycles can be
indicated in the code, typically by a no-op (no operation)
instruction, which frequently has special encoding to econo-
mize on code space. Thus, it is possible to have an empty
EBB. In the absence of conditional deferred branch opera-
tions, a compiler can possibly optimize out any empty EBBs
by replacing the control transfer into the empty EBB with
one to wherever the empty EBB transfers out to. However,
in the presence of conditional deferred branch operations, it
is not possible in the general case to remove empty EBBs
without test code replication, although a compiler can
remove them in limited cases.

The transfer into an empty EBB can be predicted nor-
mally. The prediction for the transfer out must supply the
target address, which will necessarily be from a deferred
branch operation. The kind of the corresponding predictor
entry can be a branch-type (corresponding to the deferred
branch operation), and the untaken call count must be zero
(the EBB contains no code and hence no calls). The cache
line count and instruction count are zero. Such an empty
predictor entry is handled by the Prediction Logic 111 like
any other up to the Decode Control Logic 155. Specifically,
the Decode Control Logic 155 controls the Decode Stage
107 to annotate the shifted instructions with their address so
that executing transfers can check whether a taken or
untaken transfer was predicted correctly. The hardware
execution of a taken transfer (including a deferred transfer
arising from a previously executed transfer operation) deter-
mines the target address and compares it to the instruction
address of the next instruction to issue. The two must match
or a mispredict is indicated. In the absence of a taken
transfer, the next instruction to issue must be the fall-through
instruction, which may be indicated in the address annota-
tion or by a flag attached to the instruction by the Instruction
Shifter, or again a mispredict is indicated. The transfer
operation execution operates on an instruction with an
annotated address to perform the mispredict check, but the
predictor entry for an empty EBB nominally requests that no
instructions be shifted and the Instruction Shifter be
advanced to the following predictor entry in the chain. An
instruction shifted from that following predictor entry would
be annotated with the address of the following EBB, not the
(nominal) address of the empty EBB. When the transfer into
the empty EBB is executed, it will find that the next
instruction to issue is not from the target address but is from
the target of the target, and will signal a mispredict. Thus
normal shifting from an empty EBB would signal a mispre-
dict every time the empty EBB is entered. Hence the
Instruction Shifter must isolate an empty instruction when it
receives an empty EBB, and annotate it with the EBB
address. This empty instruction passes through Decode
Stage unchanged until it reaches the issue point. When the
transfer into the empty EBB executes it finds the empty
instruction next to issue, and checks that address normally,
which succeeds. That check removes the empty instruction
from its place in the decode pipeline, letting following
instructions advance toward issue. The next following
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instruction will be from the EBB that was the target of the
empty EBB, and will be annotated with that target address.
By definition an empty EBB can only occur when there is a
non-zero lag (no-op) count. Consequently there will be at
least one cycle for the empty instruction to be removed and
the following instruction moved to issue before the deferred
branch operation that exits the empty EBB executes. When
the exit branch executes, the target address is checked
normally against the address of the next instruction to issue.
These addresses will match.

Adaptation for Split-Stream Encoding

Each EBB can possibly include two distinct instruction
streams that are labeled as “Stream I” and “Stream II” in
FIG. 12. Stream I includes a number of instructions (such as
four instructions as shown) with an instruction order that
logically extends in a direction of increasing memory
address space relative to the entry address of the EBB.
Stream II includes a number of instructions (such as three
instructions as shown) with an instruction order that logi-
cally extends in a direction of decreasing memory address
space relative to the entry address of the EBB. The control
transfer operation(s) of the EBB, if any, can be constrained
to be part of the stream I instructions of the EBB or the
stream II instructions of the EBB. In this case, the CPU can
include two Decode Stages that are configured to indepen-
dently decode the stream I instructions and the stream II
instructions of the EBBs of a program. Furthermore, the
CPU can include two top-level (L1) instruction caches and
corresponding Instruction Buffers, one for each Decode
Stage. Specifics of this configuration are described in detail
in U.S. patent application Ser. No. 14/290,108, filed on May
29, 2014, herein incorporated by reference in its entirety. In
this configuration, the CPU includes one Exit Table and Exit
Cache that is configured to generate a chain of predictor
entries for the predicted sequence of EBB fragments of a
program. However, each predictor entry in the chain of
predictor entries read from the Exit Cache is split into two
different entries, one entry for supply to a first Prediction
Queue that feeds Decode Control Logic for the Instruction
Shifter/Decode Stage for stream I instructions of the pre-
dicted sequence of EBB fragments of the program and the
other entry for supply to the second Prediction Queue that
feeds Decode Control Logic for the Instruction Shifter/
Decode Stage for the stream II instructions of the predicted
sequence of EBB fragments of the program. The address
field, transfer kind field, untaken call and iteration count
fields of the two entries are identical but the cache line count
and instruction count fields for the two entries can differ
such that they represent the extent of the corresponding
stream | instructions or stream II instructions in the pre-
dicted sequence of EBB fragments. Consequently a predic-
tor entry stored in the Exit Table and Exit Cache contains
only a single address field, untaken call count, iteration
count, and transfer kind, but contains two pairs of cache line
counts and instruction counts, one for each of the stream I
instructions and stream II instructions of the corresponding
EBB fragment. Eventually, when the predictor entry is read
from the Exit Cache and split into two parts, the cache line
and instruction count pair for the other stream is removed
from the corresponding entry. This format can be referred to
as a half-prediction or half-pred.

Note that Prefetcher, Fetcher, Decode Control Logic and
Instruction Shifter are all duplicated, one for each of the two
instruction streams [ and I, but the processing of the two
sides are similar to that described herein. Also note that
Decode Stages of the stream I and stream II instructions of
the predicted sequence of EBB fragments can be configured
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to advance in lock step in terms of machine cycles (ignoring
NOOP instructions in either stream). Furthermore, the
instruction sizes of the stream I and stream II instructions
can vary with respect to one another such that the Decode
Stages of the stream I and stream II instructions do not
advance in lock step in terms of bytes.

Furthermore, the Prefetcher and Fetcher for the two
instruction streams can be configured to issue prefetch
requests that distinguish the cache lines that are to go to the
corresponding Decode Stage of the two streams and issue
the corresponding request in such a way that the hoisted
cache lines are staged in the appropriate top-level (L1)
instruction cache for the corresponding stream if the hoist
would bring them to that level. Note that one Fetcher fetches
additional lines toward increasing memory addresses while
the other fetches additional lines toward decreasing memory
addresses. In addition, the entry line of an EBB may need to
be decoded by the Decode Stage for both streams. Rather
than prefetch and/or fetch the cache line for the EBB entry
point twice, the Prefetcher and/or the Fetcher can use the
low bit of the target address to select one of the two top-level
(L1) instruction caches to hoist into. This randomizes the
location of the cache line for the entry point of the EBB
which load balances the two top-level (L.1) instruction
caches. In this case, the Fetcher for each one of the two
streams must be able to make requests to the two top-level
(L1) instruction caches, and the resulting cache lines must
have paths to both Instruction Buffers for the two streams.

The connection between Exit Cache and the two Predic-
tion Queues can be organized such that the queues receive
half-preds independently, or alternatively the Exit Cache
may extract a full predictor entry only when both queues can
accept a half-pred. The former arrangement permits some-
what better buffering in the Prediction Queues because one
can run ahead of the other, while the latter arrangement
reduces the number of access ports that the Exit Cache
maintains.

VARIATIONS

While the target code address of most call, jump and
branch operations known statically at compile time, some
fraction of transfers have their target address computed at
run time, for example when calling through function pointer
variables. However, for the purposes of prediction how the
target address is determined at execution is irrelevant: the
executed transfer has an address, and the predictor was
either right or wrong about what that address was. That is,
dynamic target addresses can be predicted in exactly the
same way as static addresses are.

It is possible for the information and associated process-
ing of the predictor update records stored in the Update
Queue can be merged into the predictor entries (or half-
preds) stored in the Prediction Queue(s) of the CPU. This
would allow the separate data structure of the Update Queue
to be omitted while the update records remain logically
distinct.

Furthermore, there are many other techniques in use for
branch prediction that are directly adaptable to the genera-
tion and processing of exit predictor entries as described
herein. For example, it is possible for the Exit Table to be
configured to store multiple predictor entries for each EBB
or EBB fragment. The search key of the Exit Table can be
modified to contain history information about the flow of
control that led up to the keyed EBB or EBB fragment, and
selects from among the stored predictor entries.
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Furthermore, tables such as the Exit Table tend to be large
and to consume significant chip area and power. A variation
on the single hardware table is to treat the table as the top
cache of a hierarchy of tables, possibly extending down to
an underlying very large table in memory. In such a hierar-
chy, if no predictor entry is found corresponding to a
particular search key (i.e. the check bits did not match) then
search is continued in the next table down, in a manner
analogous to the caches in the memory hierarchy. If an entry
is not found at the top level table but is found lower down
then the predictor entry can be hoisted up the table hierarchy
so that it will be found more easily the next time that the
EBB or EBB fragment is entered. The hoisted predictor
entry will necessarily replace some other predictor entry,
which can be lowered down the hierarchy in case it might be
needed in the future. Standard techniques for improving
performance of a cache are applicable, such as victim
buffers.

Furthermore, the Exit Table predictor constructs and
associated processing can be adapted for instruction block
formats and organizations for sequences (or streams) of
program code that are different from the EBBs and associ-
ated EBB fragments as described herein.

There have been described and illustrated herein several
embodiments of a computer processor and corresponding
method of operations. While particular embodiments of the
invention have been described, it is not intended that the
invention be limited thereto, as it is intended that the
invention be as broad in scope as the art will allow and that
the specification be read likewise. For example, the micro-
architecture and memory organization of the CPU 101 as
described herein is for illustrative purposes only. A wide
variety of CPU microarchitectures can embody the improve-
ment and methods described herein, including microarchi-
tectures that employ in-order execution, microarchitectures
that employ out-of-order execution, superscalar microarchi-
tectures, VLIW microarchitectures, single-core microarchi-
tectures, multi-core microarchitectures, and combinations
thereof. In another example, the functionality of the CPU
101 as described herein can be embodied as a processor core
and multiple instances of the processor core can be fabri-
cated as part of a single integrated circuit (possibly along
with other structures). It will therefore be appreciated by
those skilled in the art that yet other modifications could be
made to the provided invention without deviating from its
spirit and scope as claimed.

What is claimed is:

1. An apparatus for predicting control flow through
sequences of instructions executed by a computer processor,
wherein the sequences of instructions are stored in memory
and organized as one or more instruction blocks each having
an entry point and at least one exit point offset from the entry
point, wherein each instruction block is partitioned into one
or more fragments, where each fragment begins with either
the entry point of the instruction block or a return point from
a call operation, and ends with either a call operation or a
conditional or unconditional exit from the instruction block,
the apparatus comprising:

a table storing a plurality of entries each associated with
an instruction block or fragment thereof, wherein at
least one entry corresponding to a given instruction
block or fragment thereof includes a predictor corre-
sponding to a predicted execution path that exits the
given instruction block or fragment thereof, wherein
the table is queried in order to generate a chain of
predictors corresponding to a sequence of instruction
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blocks or fragments thereof that is predicted to be
executed by the computer processor.

2. The apparatus according to claim 1, wherein:

the at least one entry corresponding to the given instruc-
tion block or fragment thereof includes an address field
that points to a target instruction block or fragment
thereof.

3. The apparatus according to claim 2, wherein:

said address field comprises an offset address relative to
a base address.

4. The apparatus according to claim 2, wherein:

the at least one entry corresponding to the given instruc-
tion block or fragment thereof further includes infor-
mation that represents the extent of the instructions of
the given instruction block or fragment thereof pre-
dicted to be executed by the computer processor as
stored in memory.

5. The apparatus according to claim 4, wherein:

said information that represents the extent of the instruc-
tions of the given instruction block or fragment thereof
predicted to be executed by the computer processor as
stored in memory includes a cache line count value and
an instruction count value, wherein the cache line count
value that represents the number of cache lines of the
given instruction block or fragment thereof as stored in
memory, and wherein the instruction count value rep-
resents the number of instructions in the last cache line
of the given instruction block or fragment thereof as
stored in memory.

6. The apparatus according to claim 2, wherein:

the at least one entry corresponding to the given instruc-
tion block or fragment thereof further includes infor-
mation that is used to control prefetching of cache lines
of the given instruction block or fragment thereof into
cache that is logically part of the memory that stores the
sequence of instructions, or hoist such cache lines
within the cache.

7. The apparatus according to claim 2, wherein:

the at least one entry corresponding to the given instruc-
tion block or fragment thereof further includes infor-
mation that is used to control fetching of cache lines of
the given instruction block or fragment thereof into an
instruction buffer.

8. The apparatus according to claim 2, wherein:

the at least one entry corresponding to the given instruc-
tion block or fragment thereof further includes infor-
mation that is used to control decoding of the instruc-
tions of the given instruction block or fragment thereof.

9. The apparatus according to claim 2, wherein:

the at least one entry corresponding to the given instruc-
tion block or fragment thereof further includes infor-
mation that is used to obtain cache lines of the given
instruction block or fragment thereof from an instruc-
tion buffer for decode processing.

10. The apparatus according to claim 2, wherein:

the at least one entry corresponding to the given instruc-
tion block or fragment thereof further includes infor-
mation that is used to control isolation of instructions
from the cache lines of the given instruction block or
fragment thereof for instruction decode processing.

11. The apparatus according to claim 2, wherein:

the at least one entry corresponding to the given instruc-
tion block or fragment thereof further includes meta-
data corresponding to the predictor, wherein the meta-
data is selected from the group consisting of:
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an indicator of the expected kind of control transfer
operation to the target instruction block or fragment
thereof,

a count of the number of untaken conditional call
operations contained by the corresponding instruc-
tion block or fragment thereof,

a number of key check bits for detecting hashing
collisions,

information about the quality of the prediction defined
by the predictor, and

loop information for the corresponding instruction
block or fragment thereof.

12. The apparatus according to claim 1, further compris-

ing:

an exit cache that stores predictors output from the table.

13. The apparatus according to claim 1, further compris-

ing:

a prefetcher that is configured to process predictors output
from the table in order to prefetch cache lines of
instruction blocks or fragments thereof that correspond
to said predictors into cache that is logically part of the
memory that stores the sequence of instructions, or
hoist such cache lines within the cache.

14. The apparatus according to claim 12, further com-

prising:

a queue that stores a set of predictors output from the exit
cache.

15. The apparatus according to claim 14, further com-

prising:

a fetcher that is configured to process the set of predictors
stored in the queue in order to fetch cache lines of
instruction blocks or fragments thereof that correspond
to said predictors into an instruction buffer.

16. The apparatus according to claim 14, further com-

prising:

decode control logic that is configured to process the set
of predictors stored in the queue in order to control
decoding of instructions of instruction blocks or frag-
ments thereof that correspond to said predictors.

17. The apparatus according to claim 16, wherein:

the computer processor includes an instruction shifter that
obtains cache lines from an instruction buffer and
isolates instructions from such cache lines; and

the decode control logic is configured to process a given
predictor at the head of the queue in order to control
operation of the instruction shifter to obtain at least one
cache line that contains one or more instructions of the
instruction block or fragment thereof that corresponds
to the given predictor.

18. The apparatus according to claim 17, wherein:

the decode control logic is configured to process the given
predictor in order to control operation of the instruction
shifter to isolate each instruction of the instruction
block or fragment thereof that corresponds to the given
predictor.

19. The apparatus according to claim 1, further compris-

ing:

mispredict logic that processes information related to
execution behavior of the computer processor in order
to detect a mispredict in the chain of predictors and start
a new chain of predictors that initially follows the
actual execution path of such execution behavior.

20. The apparatus according to claim 19, wherein:

said mispredict logic updates the predictor entries stored
in the table based on the execution behavior of the
computer processor.
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21. The apparatus according to claim 1, further compris-

ing:

a mechanism that stores predictor entries for a program
and is configured to load such predictor entries into the
table during execution of the program.

22. The apparatus according to claim 21, wherein:

the mechanism is configured to load into the table pre-
dictor entries corresponding to a particular function in
the event that computer processor experiences a taken
mispredict with respect to a call operation to the
particular function and the table does not include any
predictor entries for the particular function.

23. The apparatus according to claim 21, wherein:

the mechanism is further configured to update the predic-
tor entries stored for the program in persistent storage
for access the next time that the program is run.

24. The apparatus according to claim 1, wherein:

at least one instruction block includes one or more call
operations and associated return operations.
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25. The apparatus according to claim 1, wherein:

successive fragments of a given instruction block are
associated with keys that are arithmetically derivable
from the key of the previous fragment.

26. The apparatus according to claim 1, wherein:

at least one entry of the table stores an alternate key
predictor corresponding to an execution path that does
not exit a given instruction block or fragment thereof
and corresponds to a misprediction of one other entry
stored in the table, wherein said alternate key predictor
is associated with an alternate key that is arithmetically
derivable from a key associated with said one other
entry.

27. The apparatus according to claim 1, wherein:

the at least one exit point of each instruction block is
defined by a control flow operation selected from a call
operation, a conditional branch operation and an
unconditional branch operation.
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