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57 ABSTRACT

A computer processor that operates on distinct first and
second instruction streams that have a predefined timed
semantic relationship. At least one of the first and second
instruction streams includes variable-length instructions
having a header and associated bundle bounded by a head
end and a tail end. An alignment hole within the bundle
encodes information representing at least one nop operation.
The computer processor includes first and second multi-
stage instruction processing components configured to pro-
cess in parallel the first and second instruction streams. At
least one of the first and second multi-stage instruction
processing components includes an instruction buffer oper-
ably coupled to a decode stage. The decode stage is con-
figured to process a variable-length instruction by isolating
and interpreting the alignment hole of the variable length
instruction in order to initiate zero or more nop operations
that follow the timed semantic relationship between the first
and second instruction streams.

24 Claims, 4 Drawing Sheets
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1
COMPUTER PROCESSOR EMPLOYING
INSTRUCTIONS WITH ELIDED NOP
OPERATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present disclosure is related to i) U.S. patent appli-
cation Ser. No. 14/290,108 entitled “Computer Processor
Employing Split-stream Encoding,” and ii) U.S. patent
application Ser. No. 14/290,161, entitled “Computer Pro-
cessor Employing Double-Ended Instruction Decoding,”
both applications commonly owned by the assignee of the
present application and filed concurrently herewith and here
incorporated by reference in their entireties.

BACKGROUND

1. Field

The present disclosure relates to computer processors.

2. Related Art

A computer processor (or central processing unit or CPU)
executes a sequence of instructions, typically obtained from
main memory, which are executed in positional order except
when redirected by a branch, jump, call, or similar control-
flow operation. The order is important because there are
often semantic dependencies between pairs of instructions
and the machine state would be different if the instructions
were executed in a different order; that is, instruction execu-
tion is not commutative. However, strict order is not always
required for a particular pair of instructions, and an impor-
tant class of CPU architectures (called out-of-order execu-
tion (OOO) machines) detects the presence of semantic
dependencies and reorders the execution of instructions in
ways that preserve semantics while improving execution
performance. Nevertheless, for nearly all CPU architectures,
the original program instruction order is used as an implicit
specification of the intended program semantics, whether
reordered later or not.

There is little to be gained by reordering when the CPU
can execute only one instruction at a time. After all, if every
instruction operation has to be executed individually then
any ordering should take as long to execute as any other.
However, in the quest for CPU performance, computer
designers have created CPUs that are capable of performing
more than one operation simultaneously, in parallel. Clearly,
if the program calls for two instructions to be executed in
sequence, but they are actually executed simultaneously,
then any semantic dependency between them will be vio-
lated. An OOO-architecture CPU can detect when two
instructions, while sequential in the program, are indepen-
dent and thus can be executed simultaneously. This permits
the CPU to perform both instructions in parallel, shortening
the total execution time of the program. The hardware to
perform OOO reordering is large, difficult to design, and
costly in chip area, power, and clock rate impact. Neverthe-
less it can yield significant gains when the program instruc-
tion set interface specifies a single, nominally sequential,
instruction stream. However, there are ways to obtain par-
allel execution by using a different approach to specifying
instruction semantics.

One common approach to obtain parallel execution is
referred to as “multi-threading,” where the program is
specified not as a single sequential stream of instructions,
but as several such streams. Sequential semantics are
enforced within any single stream of instructions, but the
streams themselves are considered to be independent and
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instructions between streams can be executed in any order
except for certain specialized instructions which serve to
synchronize the streams. Each stream may be executed by its
own sub-CPU or pipeline, or the streams may be interleaved
on a single CPU such that each uses resources left idle by the
others.

In another approach to obtain parallel execution, typified
by Very Long Instruction Word (VLIW) architectures, there
is only one instruction stream, but each instruction may have
several operations which are executed in parallel. In essence,
a VLIW sees multiple operation streams rather than multiple
instruction streams, where operations from multiple opera-
tion streams are concatenated together to form a single
instruction in a single instruction stream. Each position at
which an operation can reside within the instruction is called
a slot. Because the operations of each slot are in a shared
instruction, the multiple operations streams are synchro-
nized at every cycle and advance in lock step. Consequently,
an operation executed in a given cycle may be semantically
dependent on any operation executed earlier and operations
that are executed in later cycles may be semantically depen-
dent on it, but operations (from a single instruction)
executed in the same cycle cannot be dependent on each
other. So long as there are at least as many independent
operations in a cycle as there are slots then all slots can be
kept busy; if not then some slots must remain idle. Code
generation software such as compilers analyze the program
and assign individual operations to the slots so as to maxi-
mize performance. This task, called static scheduling, is
similar to what an OOO machine does in dynamic sched-
uling hardware during execution. But because it is done
once, in advance, and by software able to statically analyze
and optimize future execution, the result is a much cheaper
CPU and generally better performance for a large class of
programs.

The instruction and operation streams described here are
abstract notions, which must be encoded as a sequence of
primitive operations defined by bits in memory that are
fetched and executed by the CPU. The encodings used by
different CPU architectures vary greatly from each other, but
all seek to balance ease of interpretation by hardware decode
machinery against compactness of representation. In most
architectures, the instructions are intended to be executed in
a particular order as an instruction stream, where the execu-
tion order is usually determined by the address order of the
instructions in memory but may be changed as a conse-
quence of the execution of flow of control operations in the
instruction stream as described above with respect to OOO
machines.

Broadly, there are two sorts of encodings used for instruc-
tions: fixed-length encodings and variable-length encodings.
In a fixed-length encoding, each instruction uses a single
fixed number of bits for its representation, for example 32
bits. In a variable-length encoding, different instructions use
different bit-lengths where the bit-length for a particular
instruction is typically selected by minimizing the number of
bits required to convey the semantics of that particular
instruction. Thus, some instructions may be 8 bits in length,
others 16 bits, 56 bits or whatever. The fixed-length encod-
ing approach is commonly associated with RISC (Reduced
Instruction Set Computer) designs typified by the SPARC
instruction set architecture, while the variable-length encod-
ing approach is commonly associated with CISC (Complex
Instruction Set Computer) designs typified by x86 instruc-
tion set architectures.

In general, fixed-length encodings are relatively easy to
decode, and it is especially easy to decode several operations
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simultaneously in parallel because it is known a priori where
in memory each operation starts. Parallel decode reads in a
block of operations, breaks them at operation boundaries,
and gives each of them to independent decoders. However,
fixed length encodings are not compact, because the seman-
tics of many kinds of operation can be represented in fewer
bits than the fixed length. Other kinds of operation need
more bits than the encoding length and so a single logical
operation must be represented awkwardly as two or more of
the fixed length operation.

By contrast, variable-length encodings tend to be quite
compact, which is economical of memory space and reduces
the load on memory pathways arising from instruction fetch.
However, the decode machinery does not know the length of
a particular variable-length operation until it has examined
it, a process called parsing the operation. This is a problem
for modern architectures that execute several operations in
parallel. While the decode hardware that parses operations
can fetch a block of memory that contains several opera-
tions, it cannot know where any operation after the first
begins until after it has parsed all prior operations. This
serializes operation parse, whereas the fixed length encod-
ings can be easily parsed in parallel. Schemes for parallel
decode of variable length operations (despite the serial
parse) exist, but are difficult to realize and very expensive in
hardware and power consumption.

Furthermore, there are two prior art approaches to instruc-
tion semantics. In one approach, typically referred to as
sequential semantics, each instruction presumes that all prior
instructions in the instruction stream have been executed to
completion before the present instruction begins, and so all
consequences of those prior instructions are fully reflected in
machine state. If a prior instruction takes a long time to
execute then subsequent instructions simply wait for it to
complete, a condition called stall. In the other approach,
typically referred to as timed semantics, some fixed number
(typically one) of instructions are begun every time period
whether prior instructions have completed or not. On a wide
issue machine, each instruction may contain several opera-
tions that issue together (when the instruction issues) but
complete independently. Each operation sees only the con-
sequences of prior operations that have actually completed.
There may be other in-flight operations that have begun
execution but not yet completed, and the effects of these
in-flight operations are invisible. If a prior operation takes a
long time to execute, then there may be many subsequent
instructions executed before the lengthy operation’s results
are available.

Clearly if every instruction took exactly one time period
to execute then the two approaches are the same in their
effect. However, the natural execution time of different
operations (called the latency) varies considerably in prac-
tice. Thus, a double-precision floating point multiply
instruction may take ten times as many cycles to perform as
does a simple integer add instruction.

Early instruction designs nearly always used sequential
semantics because doing so simplified the hardware, despite
the limit of doing only one instruction and its single opera-
tion at a time. Modern designs increase CPU complexity to
be able to gain the ability to execute several operations in
parallel, and so many designs (especially VLLIW designs) use
timed semantics.

Timed semantics instruction designs permit more than
one operation to be executed in parallel. However, there are
times when the program has no more operations to execute.
For example, if a floating-point product is to be an argument
of a function then the CPU cannot make the call until the
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4

product is ready, and there may not be anything else to do
but wait. While an ability to wait is inherent in sequential
semantics, in timed semantics the hardware expects to start
an instruction every period, even when there’s nothing to do.
For this purpose, instruction sets with timed semantics
always define a nop (no-operation) operation, which
executes in one issue cycle and has no machine state
consequences at all. The compiler or other instruction-
generating software then fills any idle waiting periods with
nop operations. Thus in the example, the actual instruction
stream would contain the multiply operation, then some
number of nop operations sufficient to let the multiply
complete, and then the call.

The nop operation thus permits the benefit of timed
semantics without a problem when there are not enough
operations to fill necessary wait periods. The drawback to
nop operations is that they must exist in the instruction
stream and be processed as if they were useful, which costs
memory and power.

SUMMARY

This summary is provided to introduce a selection of
concepts that are further described below in the detailed
description. This summary is not intended to identify key or
essential features of the claimed subject matter, nor is it
intended to be used as an aid in limiting the scope of the
claimed subject matter.

Tustrative embodiments of the present disclosure are
directed to a computer processor that processes distinct first
and second instruction streams that have a predefined timed
semantic relationship. At least one of the first and second
instruction streams includes variable-length instructions
having a header and associated bit bundle bounded by a head
end and a tail end with an alignment hole within the bit
bundle. The alignment hole encode information representing
zero or more nop operations. The computer processor
includes first and second multi-stage instruction processing
components corresponding to the first and second instruction
streams. The first and second multi-stage instruction pro-
cessing components are configured to access and process in
parallel instructions belonging to the first and second
instruction streams stored in the memory system. At least
one of'the first and second multi-stage instruction processing
components includes an instruction buffer operably coupled
to a decode stage. The instruction buffer is configured to
store at least one variable-length instruction, and the decode
stage is configured to process the variable-length instruction
stored by the instruction buffer by isolating and interpreting
the alignment hole of the variable length instruction in order
to initiate zZero or more nop operations that follow the timed
semantic relationship between the first and second instruc-
tion streams.

The alignment hole can have a variable location within
the bit bundle. The variable-length instruction can have a
header that does not specify the location of the alignment
hole within the bit bundle.

The instruction buffer and the decode stage can be part of
the first multi-stage processing component that accesses and
processes the first instruction stream, where the decode stage
is configured to interpret the alignment hole of the variable
length instruction in order to initiate zero or more nop
operations performed by the second multi-stage processing
component in processing the second instruction stream.

The instruction buffer and the decode stage can also be
part of the second multi-stage processing component that
accesses and processes the second instruction stream, where
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the decode stage is configured to interpret the alignment hole
of the variable length instruction in order to initiate zero or
more nop operations performed by the first multi-stage
processing component in processing the first instruction
stream.

In one embodiment, the alignment hole of the variable
length instruction can represent a nop count that is accumu-
lated in a running counter maintained by the decode stage,
wherein the running counter is updated according to decode
cycles performed by the decode stage.

The alignment hole can be interpreted to initiate nop
operations (stalls) in the current decode cycle or in a decode
cycle that follows the current decode cycle.

In one embodiment, the first and second instruction
streams can be part of a plurality of instruction blocks stored
by a memory system. Each instruction block is associated
with an entry address with the first and second instruction
streams located within the instruction block. The first
instruction stream has an instruction order that logically
extends in a direction of increasing memory space relative to
said entry address, and the second instruction stream has an
instruction order that logically extends in a direction of
decreasing memory space relative to said entry address. The
first and second multi-stage instruction processing compo-
nents are configured to access and process in parallel
instructions belonging to the first and second instruction
streams of a particular instruction block stored in the
memory system. The first instruction stream can include
instructions of a first class different from a second class of
instructions in the second instruction stream in the same
instruction block. The first multi-stage instruction process-
ing component can be configured to process instructions
belonging to the first class of instructions, and the second
multi-stage instruction processing component is configured
to process instructions belonging to the second class of
instructions. For example, the first class of instructions can
include instructions that perform flow-control operations
and instructions that perform memory reference operations,
and the second class of instructions can include instructions
that perform computational operations.

The first and second multi-stage instruction processing
component can each include a program counter, an instruc-
tion fetch unit, an instruction buffer, a decode stage and
associated execution logic.

In one embodiment, the bit bundle includes a plurality of
slots each defining a corresponding operation, wherein the
plurality of slots and corresponding operations are logically
partitioned into a plurality of distinct operation blocks with
a first group of operation blocks extending from the head end
of the bit bundle toward the tail end of the bit bundle and a
second group of operation blocks extending from the tail end
of the bit bundle toward the head end of the bit bundle. The
second group of operation blocks includes a tail end opera-
tion block disposed adjacent the tail end of the bit bundle.
The decode stage can be configured to process the variable-
length instruction by decoding at least one operation of a
particular operation block belonging to the first group of
operation blocks in parallel with decoding at least one
operation of the tail end operation block.

The alignment hole can be located between the first group
of operation blocks and the second group of operation
blocks. The decode stage can be configured to process the
variable-length instruction by parsing and decoding opera-
tions for each one of the first group of operation blocks in a
sequential block-by-block manner that follows the logical
forward order of the first group of operation blocks, and
parsing and decoding operations for each one of the second
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group of operation blocks in a sequential block-by-block
manner that follows the logical reverse order of the second
group of operation blocks. The decode stage can be further
configured to process the alignment hole after parsing and
decoding all of the first group of operation blocks and all of
the second group of operations blocks.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a schematic diagram of the logical organization
of an instruction block according to an embodiment of the
present disclosure, where the instruction block is loaded into
the memory system of a computer processing system.

FIG. 1B is a schematic diagram illustrating a program
represented by a sequence of instruction blocks of FIG. 1.

FIG. 1C is a schematic diagram of the logical organization
of the stream I instructions of the instruction block of FIG.
1A.

FIG. 1D is a schematic diagram of an exemplary embodi-
ment of the header of the instruction of FIG. 1C.

FIG. 1E is a schematic diagram of stream [ and stream I
instructions contained within an instruction block according
to an embodiment of the present disclosure.

FIG. 2 is a schematic block diagram of a computer
processing system according to an embodiment of the pres-
ent disclosure.

FIG. 3 is schematic diagram that illustrates exemplary
operations carried out by the decode stage 209A of FIG. 2
in processing the stream I instructions of FIG. 1C as part of
an instruction block of FIG. 1E.

DETAILED DESCRIPTION OF THE
ILLUSTRATIVE EMBODIMENTS

Tustrative embodiments of the disclosed subject matter
of the application are described below. In the interest of
clarity, not all features of an actual implementation are
described in this specification. It will of course be appreci-
ated that in the development of any such actual embodiment,
numerous implementation-specific decisions must be made
to achieve the developer’s specific goals, such as compli-
ance with system-related and business-related constraints,
which will vary from one implementation to another. More-
over, it will be appreciated that such a development effort
might be complex and time-consuming but would neverthe-
less be a routine undertaking for those of ordinary skill in the
art having the benefit of this disclosure.

As used herein, the term “operation” is a unit of execu-
tion, such as an individual add, load, or control-flow opera-
tion.

The term “instruction” is a unit of logical encoding
including a number of operations where all of the operations
of the instruction are semantically performed together.

The term “slot” is a unit of logical encoding included
within an instruction that is specific to an operation of the
instruction.

The term “bundle” is a unit of physical encoding for the
operations of an instruction. Thus, an instruction decoder
receives a bundle to decode.

The term “operation block™ in reference to the operations
of'a bundle is a unit of physical encoding for the operations
of a grouping of one or more slots within the bundle of a
given instruction. Thus, a bundle can include one or more
operation blocks.

In accordance with the present disclosure, a program is
loaded into and stored in a memory system as a set of
instruction blocks within the memory system to be executed
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in logical sequence, not necessarily in memory sequence in
either direction, as shown in FIGS. 1A and 1B. An entry
point (or entry address) is associated with each instruction
block. Each instruction block includes two distinct instruc-
tion streams that are labeled as “Stream I” and “Stream II”
in FIG. 1A. Stream [ includes a number of instructions (such
as four instructions as shown) with an instruction order that
logically extends in a direction of increasing memory space
relative to the entry address of the instruction block. Stream
1I includes a number of instructions (such as three instruc-
tions as shown) with an instruction order that logically
extends in a direction of decreasing memory space relative
to the entry address of the instruction block. The stream I
and the stream II instructions of the instruction block are
entered at the entry address by a branch operation or other
control-flow operation from some other instruction block or
sequence, and will exit from the instruction block via
another control-flow operation after executing some portion
of the stream I and stream II instructions of the instruction
block. An instruction block with one exit point (i.e., with one
control-flow operation in the sequence of stream I and
stream II instructions of the instruction block) is called a
“basic instruction block™ or “basic block” or BB. In this
case, the one control-flow operation of the BB can be
constrained to be part of the last instruction of the stream |
or the stream II instructions of the BB. An instruction block
with several possible exits point (i.e., with multiple control-
flow operations in the sequence of stream I and stream II
instructions of the instruction block) is called an “extended
instruction block™ or “extended basic block” or EBB. In this
case, one of the multiple control-flow operations of the EBB
can be constrained to be part of the last instruction of the
stream I or the stream II instructions of the EBB.

The stream I instructions of the instruction block each
have a format as shown in FIG. 1C, which includes a header
102 of fixed-length and an associated bundle 104 of vari-
able-length that defines a number of operations or
“opcodes.” The bundle 104 includes a number of operation
blocks (for example, up to four operation blocks labeled
“1F”, “2F”, 3F”, “3R” and “2R”), where each operation
block encodes one or more operations in a variable number
of slots. The slots and thus the opcodes for each given
operation block have a predefined fixed bit-length, which
can vary within the given operation block and can vary over
the operation blocks. For illustration, consider one non-
limiting example where Block 1F can have three slots
(labeled 0, 1, 2) where the Block 1F slot 0 opcodes are
always 11 bits in length, the Block 1F slot 1 opcodes are
always 9 bits in length, and the Block 1F slot 2 opcodes are
always 14 bits in length. While all the bit-lengths of the
various slots and operations within Block 1F (or any other
operation block in the bundle 104) may be the same, they are
not necessarily the same. What is the same (or fixed) is for
a particular slot within a particular operation block all
operations have a fixed bit length. The bundle 104 has a head
end 106 disposed opposite a tail end 108 as shown. The head
end 106 is located at the first bit of the first slot of the bundle
104 (which is part of Block 1F in the instruction of FIG. 1C),
while the tail end 108 is located at the last bit of the last slot
of the bundle 104 (which is part of block 2R in the
instruction of FIG. 1C). The operation blocks of the bundle
104 are further organized into two distinct groups of opera-
tion blocks: a forward group of operation blocks and a
reverse group of operation blocks. The forward group of
operation blocks extends from the head end 106 toward the
tail end 108 (for example, Blocks 1F, 2F and 3F in the
instruction of FIG. 1C). The reverse group of operation
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blocks extends from the tail end 108 toward the head end
106 (for example, Blocks 2R, 3R in the instruction of FIG.
1C). Thus, the slots and operation blocks of the forward
group of operation blocks extend along a forward order,
while the slots and operation blocks of the reverse group of
operation blocks extend along a reverse order as shown in
FIG. 1C. The forward group of operation blocks includes a
head end block located adjacent the head end of the bundle
104, and the reverse group of operation blocks includes a tail
end operation block located adjacent the tail end of the
bundle 104. Both the header 102 and the tail end 108 of the
bundle 104 can be aligned on byte boundaries with an offset
110 from zero to one less than the bit length of a byte
between the forward group of blocks and the reverse group
of blocks as shown. Moreover, the slots of each operation
block and thus the operation blocks themselves are not
necessarily byte sized or aligned on byte boundaries, which
leads to an alignment hole 110. Thus, it is possible and likely
that there will be an alignment hole 110 of one through seven
bits between the forward group of operation blocks and the
reverse group of operation blocks.

Note that the labeling of the blocks of the instructions in
FIG. 1C include a two part identifier. The first part of the
identifier (1 or 2 or 3) correspond to a logical order that the
operation blocks can be processed in. In the event that more
than one operation block shares a common first identifier,
these operation blocks can be decoded in parallel with one
another. The second part of the identifier (F or R) corre-
sponds to the group (F for forward group and R for reverse
group) that the operation blocks belong to. Thus, blocks 1F,
2F, and 3F belong to the forward group of operation blocks,
and blocks 2R and 3R belong to the second group of
operation blocks. Block 1F can be decoded first, followed by
the decoding of Blocks 2F and 2R in parallel, followed by
the decoding of Blocks 3F and 3R. Also note that there can
be a wide variation in the arrangement of operation blocks
in the bundle of the instruction. Examples of such variations
include (1F, 2R), (1F, 2F, 2R), (1F, 2F, 3F, 2R), (1F, 2F, 3R,
2R), (1F, 2F, 3F, 3R, 2R of FIG. 1C), (1F, 2F, 3F, 4F, 3R, 2R)
and so on.

As shown in FIG. 1D, the header 102 of the instruction
encodes information related to the encoding of the instruc-
tion, including:

a length field 112, which encodes information related to

the length of the instruction; and

one or more block fields 114, which encodes information

related to the number of slots in the operation block(s)
of the instruction.

The header 102 (and its contents) is placed at a fixed
position in the instruction (though not necessarily at the
beginning). Thus, the header as well as the opcode(s) of the
first block of the forward group of operation blocks of the
bundle 104 (i.e., the head end Block 1F in the instruction of
FIG. 1C) can be accessed in the first decode cycle without
otherwise examining the instruction contents. Note the loca-
tion of the alignment hole 110 is variable within the bundle
104 (depending on the size of the forward group of operation
blocks as well as the size of the reverse group of operations
blocks) and is not specified by information in the header
102.

The stream II instructions of the instruction block have a
format similar to the format of stream I instruction of FIGS.
1C and 1D with the forward direction of the forward group
of operation blocks and the reverse direction of the reverse
group of operation blocks flipped in the memory space as is
evident from FIG. 1E.
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The instruction blocks of FIG. 1E are stored in a memory
system 200 and accessed and processed by a CPU(or Core)
201 as shown in the exemplary embodiment of FIG. 2. The
CPU 201 includes two multi-stage instruction processing
components 203 A, 203B that operate to access and process
in parallel the sequence of the two instruction streams I, II
of particular instruction blocks stored in the memory system
200 according to the control flow defined by the execution
of the instructions of the instruction blocks. In parallel-
processing the two instruction streams I, II of a particular
instruction block, the multi-stage instruction processing
component 203 A operates to access and process the instruc-
tions of the stream I for the particular instruction block while
the multi-stage instruction processing component 203B
simultaneously operates to access and process the instruc-
tions of the Stream II for the particular instruction block.

The multi-stage instruction processing component 203A
includes a number of instruction processing stages (includ-
ing an instruction fetch unit (labeled “Instruction Fetch Unit
17, 205A), an instruction buffer (labeled “Instruction Buffer
17, 207A), a decode stage (labeled “Decode Stage 17, 209A)
and execution logic (labeled “Execution Logic 17, 211A))
that are arranged in a pipeline manner as shown. The
multi-stage instruction processing component 203A also
includes a program counter (labeled “Program Counter I”” or
“PC-I”, 213A) and an L1 instruction cache (labeled “L.1
Instruction Cache 17, 215A).

The L1 instruction cache 215A is logically part of the
hierarchy of the memory system 200. It is a cache that stores
copies of instruction block portions stored in the memory
system 200 in order to reduce the latency (i.e., the average
time) for accessing the instruction block portions stored in
the memory system 200. In order to reduce such latency, the
L1 instruction cache 215A can take advantage of two types
of memory localities, including temporal locality (meaning
that the same instruction will often be accessed again soon)
and spatial locality (meaning that the next memory access is
often very close to the last memory access or recent memory
accesses). The L1 instruction cache 215A can be organized
as a set-associative cache structure, a fully associative cache
structure, or a direct mapped cache structure as is well
known in the art. The hierarchy of the memory system 200
can also include additional levels of cache memory, such as
a level 2 and level 3 caches, as well as system memory. One
or more of these additional levels of the cache memory can
be integrated with the CPU 201 as is well known. The details
of the organization of the memory hierarchy are not par-
ticularly relevant to the present disclosure and thus are
omitted from the figures of the present disclosure for sake of
simplicity.

The program counter 213 A stores the memory address for
a stream I instruction and thus indicates where the multi-
stage instruction processing component 203A is in process-
ing the sequence of stream [ instructions in a given instruc-
tion block. The memory address stored in the program
counter 213 A can be used to control the fetching of stream
I instructions by the instruction fetch unit 205A. Specifi-
cally, the program counter 213A can store the memory
address for the stream I instruction to fetch. This memory
address can be derived from a predicted (or resolved) target
address of a control-flow operation, the saved address in the
case of a return operation, or the sum of memory address of
the previous stream I instruction and the length of previous
stream I instruction. In some cases, the stream I instructions
can be constrained such that they do not include control-flow
operations. In this case, the memory address stored in the
program counter 213A can be derived solely from the sum
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of memory address of the previous stream [ instruction and
the length of previous stream I instruction. The memory
address stored in the program counter 213 A can be logically
partitioned into a number of high-order bits representing a
cache line address ($ Cache Line) and a number of low-order
bits representing a byte offset within the cache line for the
stream 1 instruction.

The instruction fetch unit 205A, when activated, sends a
request to the L1 instruction cache 215A to fetch a cache line
from the L1 instruction cache 215A at a specified cache line
address ($ Cache Line). This cache line address can be
derived from the high-order bits of the program counter
213A (or possibly the program counter 213B in some
circumstances). The L1 instruction cache 215A services this
request (possibly accessing lower levels of the memory
system if missed in the L1 instruction cache 215A), and
supplies the requested cache line to the instruction fetch unit
205A. The instruction fetch unit 205A passes the cache line
returned from the L1 instruction cache 215A to the instruc-
tion buffer 207A for storage therein. The instruction fetch
unit 205A can also be configured to pass the cache line
returned from the L1 instruction cache 215A to the instruc-
tion fetch unit 207B of the multi-stage instruction processing
component 203B for storage in the instruction buffer 207B
of the of the multi-stage instruction processing component
203B. The instruction fetch unit 205A can also be configured
to receive a cache line returned from the L1 instruction
cache 215B of the multi-stage instruction processing com-
ponent 203B and pass the received cache line to the instruc-
tion buffer 207A for storage in the instruction buffer 207A.

The decode stage 209A of the multi-stage instruction
processing component 203 A is configured to decode one or
more stream I instructions stored in the instruction buffer
207A. Such decoding generally involves determining the
length of the stream I instruction, isolating one or more
operation blocks of the stream I instruction bundle, and
parsing and decoding the individual operation blocks to
determine the type of operation(s) encoded by the block and
generate control signals required for execution of the opera-
tions encoded by the block by the execution logic 211A. The
parsing and decoding of an operation block can involve
parsing the bits of the operation block into smaller slot-sized
units according to the logical arrangement of slots within the
operation block and decoding the operations of the units to
generate control signals for execution of the operations of
the operation block. The execution logic 211A utilizes the
results of the decode stage 209A to execute the operations
encoded by the one or more stream I instructions.

Similar to the multi-stage instruction processing compo-
nent 203A, the multi-stage instruction processing compo-
nent 203B includes a number of instruction processing
stages (including an instruction fetch unit (labeled “Instruc-
tion Fetch Unit II”, 205B), an instruction buffer (labeled
“Instruction Buffer 1I”, 207B), a decode stage (labeled
“Decode Stage 1I”, 209B) and execution logic (labeled
“Execution Logic 117, 211B)) that are arranged in a pipeline
manner as shown. The multi-stage instruction processing
component 203B also includes a program counter (labeled
“Program Counter II” or “PC-11", 213B) and an L1 instruc-
tion cache (labeled “L1 Instruction Cache 11”7, 215B).

The L1 instruction cache 215B is logically part of the
hierarchy of the memory system 200. It is a cache that stores
copies of instruction block portions stored in the memory
system 200 in order to reduce the latency (i.e., the average
time) for accessing the instruction block portions stored in
the memory system 200. In order to reduce such latency, the
L1 instruction cache 215B can take advantage of two types
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of memory localities, including temporal locality (meaning
that the same instruction will often be accessed again soon)
and spatial locality (meaning that the next memory access is
often very close to the last memory access or recent memory
accesses). The L1 instruction cache 215B can be organized
as a set-associative cache structure, a fully associative cache
structure, or a direct mapped cache structure as is well
known in the art. The hierarchy of the memory system 200
can also include additional levels of cache memory, such as
a level 2 and level 3 caches, as well as system memory as
described above. The L1 instruction cache 215B can be of
the same size as the L1 instruction cache 215A if the
encodings and operations of the two instruction streams
produce roughly similar demand for bytes. However, if the
encoding and/or operations of the two instruction streams
lead to imbalances demand for bytes, the two L1 instruction
caches 215A, 215B can have different sizes. The larger one
may have the same number of lines as the smaller but with
a larger line size, or may have more lines of the same size.
Which strategy will perform better in practice depends on
the details of the demand and the structure of the hierarchy
of the memory system 200.

The program counter 213B stores the memory address for
a stream II instruction and thus indicates where the multi-
stage instruction processing component 203B is in process-
ing the sequence of stream I instructions in a given instruc-
tion block. The memory address stored in the program
counter 213B can be used to control the fetching of stream
II instructions by the instruction fetch unit 205B. Specifi-
cally, the program counter 213B can store the memory
address for the stream II instruction to fetch. This memory
address can be derived from a predicted (or resolved) target
address of a control-flow operation, the saved address in the
case of a return operation, or the sum of memory address of
the previous stream I instruction and the length of previous
stream II instruction. In some cases, the stream II instruc-
tions can be constrained such that they do not include
control-flow operations. In this case, the memory address
stored in the program counter 213B can be derived solely
from the sum of memory address of the previous stream 11
instruction and the length of previous stream II instruction.
The memory address stored in the program counter 213B
can be logically partitioned into a number of high-order bits
representing a cache line address ($ Cache Line) and a
number of low-order bits representing a byte offset within
the cache line for the stream II instruction.

The instruction fetch unit 205B, when activated, sends a
request to the L1 instruction cache 215B to fetch a cache line
from the L1 instruction cache 215B at a specified cache line
address ($ Cache Line). This cache line address can be
derived from the high-order bits of the program counter
213B (or possibly the program counter 213A in some
circumstances). The L1 instruction cache 215B services this
request (possibly accessing higher levels of the memory
system if missed in the L1 instruction cache 215B), and
supplies the requested cache line to the instruction fetch unit
205B. The instruction fetch unit 205B passes the cache line
returned from the L1 instruction cache 215B to the instruc-
tion buffer 207B for storage therein. The instruction fetch
unit 205B can also be configured to pass the cache line
returned from the L1 instruction cache 215B to the instruc-
tion fetch unit 207 A of the multi-stage instruction processing
component 203 A for storage in the instruction buffer 207A
of the of the multi-stage instruction processing component
203A. The instruction fetch unit 205B can also be config-
ured to receive a cache line returned from the L1 instruction
cache 215A of the multi-stage instruction processing com-
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ponent 203A and pass the received cache line to the instruc-
tion buffer 207B for storage in the instruction buffer 207B.

The decode stage 209B of the multi-stage instruction
processing component 203B is configured to decode one or
more stream I instructions stored in the instruction buffer
207B. Such decoding generally involves determining the
length of the stream II instruction, isolating one or more
operation blocks of the stream II instruction, and parsing and
decoding the individual operation blocks to determine the
type of operation(s) encoded by the operation block and
generate control signals required for execution of the opera-
tions encoded by the operation block by the execution logic
211B. The execution logic 211B utilizes the results of the
decode stage 209B to execute the operations encoded by the
one or more stream I instructions.

Note that the CPU 201 employ caches 215A, 215B to
mitigate the delay in accessing the instruction blocks from
the memory system 200. So long as an instruction block
potion needed for execution of the program is located in the
caches 215A, 215B, then the execution of the program will
not be delayed by requesting instructions from the lower
levels of the hierarchy of the memory system 200. However,
if a needed instruction block portion is not in caches 215A,
215B, then the program must stall while it is accessed from
the lower levels of the hierarchy of the memory system 200.
Executed instructions are frequently re-executed in the near
future, so any fetched from memory will also be placed in
the cache for when next needed, replacing some other
instruction that seems less likely to be needed soon.

The totality of instructions actually executed in a CPU
over a brief period is called its working set. If the capacity
of the cache is big enough to hold the working set, then the
program can be executed with infrequent need to fetch
instruction from memory with the concomitant delay. How-
ever, if the cache is smaller than the working set, then the
instruction replaced by one fetched from memory will soon
be needed again and have to be re-fetched, only to replace
a different soon-needed instruction. This condition of end-
less instruction replacement, called thrashing, is well
known. Thrashing can severely damage program perfor-
mance. While thrashing can be somewhat ameliorated by
reorganizing the program, the only real solution is a larger
instruction cache, one large enough to hold the working set
of the program. Unfortunately, large caches are expensive in
chip area and power, and introduce extra delay in obtaining
instructions from the cache. Balancing the need for larger
instruction caches against their costs is an important con-
sideration in designing a CPU. Note that for any given cache
size and encoding there is a limit to the size of working set
that can fit into a cache without thrashing.

In the instruction block organization of the present dis-
closure, instructions are organized into two or more disjoint
instruction streams with each instruction stream having its
own instruction cache. With multiple instruction caches and
hence a large number of cache lines, the CPU 201 as
described herein can ameliorate the thrashing problem by
accommodating working sets that are much larger than can
be handled by a single cache. And, unlike a very large single
cache, the multiple caches do not incur extra delay for
instruction access.

Moreover, the instruction streams are located adjacent in
memory at the block entry point. Hence the cache line that
contains the entry point will contain some leading fraction of
both streams. In the CPU 201 described above, only a single
copy of the entry cache line can be stored in one of the
instruction caches of the CPU, while the entry cache line can
be stored in multiple instruction buffers. Thereafter, the
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decoder stage for each respective instruction stream will
fetch subsequent instructions from lines in its assigned
instruction cache only, because only these lines contain
instructions from the desired stream and not from the other
steam. This eliminates duplication across the multiple
caches.

The possible operations of an instruction set architecture
of the processor 201 can be organized into groups of
operations with the same length (and, generally similar use
of functional units) while the group widths differ from each
other with generally different functional requirements. For
example, the operations can be grouped into six groups as
follows: a first group for dyadic operations that take two
operand addresses, a second group for triadic operations that
take three operands, a third group for pure source operations
that take a special register argument or similar argument but
no ordinary operand arguments, a fourth group of pure sink
operations that take one operand and a destination (such as
a special register), a fifth group for flow-control operations,
and a sixth group for memory access operations. Each of
these groupings has their own execution functional require-
ments, which can be generally uniform within a group. For
example, each compute dyadic operation needs a computa-
tion functional unit and the operand data paths to feed it,
while each pure source operation needs a port into whatever
is the source of data. The number of each kind of these
resources is defined by the hardware of the execution logic
211A, 221B of' the processor 201. Thus, these groupings can
map (or correspond) to particular functional units of the
execution logic 211A and of the execution logic 211B. For
example, the first four group of operations can map to
particular functional units of the execution logic 211A,
while the last two groups of operations (the fifth and sixth
groups) can map to particular functional units of the execu-
tion logic 211B.

Furthermore, the group of operations that are mapped to
particular functional units of the execution logic 211A can
be encoded within certain operation blocks of the stream I
instruction that correspond to specific functional units of the
execution logic 211A. In effect, each operation block of the
stream I instruction defines a (wide) sub-instruction in the
encoding whose length is constrained by the hardware of the
execution logic 211A of the processor. For example, if the
execution logic of the processor has only five computational
pipelines for the group for dyadic operations that take two
operand addresses, then the exemplary encoding can support
only zero through five of such operations and no more, and
similarly for the other groupings. Consequently, the encod-
ing for each operation block consists solely of operations
with identical or similar format, of known maximum num-
ber. Moreover, within an operation block only the operations
of that format can exist, so it is not necessary to detect (by
parse) whether some other kind of operation is present.
Necessarily the encoding reflects the population of slots and
of operations in each slot, and these can be varied by the
design of the processor. In this configuration, where the
operations of each given operation block all use the same
format, each block can be decoded with a fixed-length
decoding operation once it has been located and extracted
from the bundle.

Similarly, the group of operations that are mapped to
particular functional units of the execution logic 211B can
be encoded within certain operation blocks of the stream 11
instruction that correspond to specific functional units of the
execution logic 211B. In effect, each block of the stream II
instruction defines a (wide) sub-instruction in the encoding
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whose length is constrained by the hardware of the execu-
tion logic 211B of the processor.

The operation block format of the stream I/II instructions
can present a problem with regard to locating the operation
blocks within the instruction. At the whole instruction level,
each operation block can be thought of as a single variable
width pseudo-operation within the instruction. That is, the
instruction can be thought of as groups of pseudo-opera-
tions, each of which is of variable width. Consequently, at
this level, the problem reduces to decoding the variable-
width pseudo-operations of the instruction, or in other words
to isolating the operation blocks. In one embodiment, the
blocks or groups of pseudo-operations can be located within
the instruction utilizing the block field(s) 114 of the header
102. In this case, the block field(s) 114 provide information
that describe the number of slots for each pseudo-operation
block in the particular instruction. Because (within each
pseudo-operation block) the operations are of known length
for each slot within the operation block, knowing how many
there are also tells the length of the pseudo-operation block
as a whole. This block length can be used to isolate each
pseudo-operation block for fixed-width decoding of the
opcode(s) contained in its slots.

This scheme can be extended further to take advantage of
other aspects of the decoding process used. As described
elsewhere, the header 102 also contains length field 112 that
contains information (such as a byte count) related to the
length of the whole instruction. As a result, the block field
114 for one of the pseudo-operation blocks can be omitted
because it can be derived during decode from the slot counts
of the other pseudo-operation blocks and the overall instruc-
tion length.

Moreover, the decode stages 209A, 209B can be config-
ured to use the length field 112 of the header 102 of the
respective instruction to quickly locate the tail end 106 of the
bundle 104 and then decode the reverse group of operation
blocks (starting with the slots of the operation block at tail
end 106 of the bundle 104, such as Block 2R in FIG. 1C) in
parallel with the decode of the first group of operation blocks
(such as the Block 2F of FIG. 1C).

In the instruction formats described herein, there can be
one or more timed semantic relationships between the
stream [ instructions and the stream II instruction of a given
instruction block that relate to the manner that the stream I
instructions and the stream I instruction of a given instruc-
tion block are decoded by the decode stages 209A, 209B and
issued for execution by the execution logic 211A, 211B of
the multi-stage instruction processing components 203A,
203B.

For example, the stream I instructions and the stream II
instructions of the given instruction block can be decoded in
a synchronous lock step manner, where one stream I instruc-
tion and one stream II instruction are taken as a matching
pair that are synchronously decoded together.

In another example, the stream I instructions and the
stream Il instructions of the given instruction block can be
decoded in a non-synchronous lock step manner where one
stream ] instruction or one stream II instruction is taken in
an alternating manner according to some defined ratio and
decoded in a non-synchronous manner with respect to one
another.

In yet another example, the stream I instructions and the
stream Il instructions of the given instruction block can be
decoded and issued for execution in a synchronous manner
where there is not necessarily lock step coordination
between the two instruction streams. In this example, the
operations(s) of a stream I instruction of the given instruc-
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tion block can issue together with the operations of a stream
1I instruction of the given instruction block, or the opera-
tion(s) of either the stream I instruction or the stream II
instruction (but not both) of the given instruction block can
issue together, or the issuance of operation(s) of either the
stream I instruction and/or the stream II instruction of the
given instruction block can be paused for some determined
time.

In another example, the stream 1 instructions and the
stream 11 instructions of the given instruction block can be
decoded and issued for execution in an asynchronous man-
ner where the stream I instructions and the stream II instruc-
tions are decoded and issued as efficiently as possible. In this
case, the issuance of one of the instruction streams (i.e.,
“leading stream”) can lead the issuance of the other instruc-
tion stream (i.e., the “lagging stream”) and violate program
semantics. In order to avoid this situation and preserve the
program semantics, the leading stream can be paused until
the lagging stream catches up.

In all of these examples, there is a potential semantic
dependency between any instruction and any other instruc-
tions decoded and executed simultaneously or subsequently,
and the details of such semantic dependencies vary accord-
ing to the examples given above.

The decode stages 209A and 209B of the CPU 201 are
controlled to follow the timed semantic relationships
between the stream I instructions and the stream II instruc-
tions by interpreting nop operations that are encoded within
the alignment hole of respective stream 1 instructions and
stream 1II instructions. The alignment hole of the stream 11
instruction is shown in FIG. 1C. The stream II instructions
have a similar alignment hole located between the forward
and reverse group of operation blocks of the bit bundle of the
stream II instruction. Specifically, the bits of the alignment
hole specifies a count of implicit nop instructions. This
mechanism for encoding nop instructions is more economi-
cal of space and processing than would be the case if they
were encoded as ordinary operations.

The decode stage 209A interprets the bits of the alignment
hole 110 in the stream I instruction in order to control stall
operations performed by the decode stage 209B for stream
1T instructions. The stall operations of the decode stage 209B
can involve disabling decode operations of stream II instruc-
tions and/or disabling issuance of the decode results to the
functional units of the execution logic 211B. The timing of
the stall operations of the decode stage 209B can be varied
by design. For example, the stall operations of the decode
stage 209B can be initiated in same cycle where the decode
stage 209A interprets the bits of the alignment hole 110 in
the stream [ instruction. In this case, the decode stage 209B
stalls in an immediate lock step manner with the decode of
the corresponding stream I instruction. In another example,
the stall operations of the decode stage 209B can be initiated
in one or two or more subsequent cycles. In this case, the
decode stage 209B stalls in a fixed delayed manner relative
to the decode of the corresponding stream I instruction. This
fixed delay can dictate the scheduling (insertion) of the nop
operation as part of the stream I instruction stream in order
to follow the time semantic relationship of the stream I and
stream 1I instructions.

Similarly, the decode stage 209B interprets the bits of the
alignment hole in the stream II instruction in order to control
stall operations performed by the decode stage 209A for
stream [ instructions. The stall operations of the decode
stage 209A can involve disabling decode operations of
stream [ instructions and/or disabling issuance of the decode
results to the functional units of the execution logic 211A.
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The timing of the stall operations of the decode stage 209A
can be varied by design. For example, the stall operations of
the decode stage 209A can be initiated in same cycle where
the decode stage 209N interprets the bits of the alignment
hole in the stream II instruction. In this case, the decode
stage 209A stalls in an immediate lock step manner with the
decode of the corresponding stream I instruction. In another
example, the stall operations of the decode stage 209A can
be initiated in one or two or more subsequent cycles. In this
case, the decode stage 209 A stalls in a fixed delayed manner
relative to the decode of the corresponding stream 11 instruc-
tion. This fixed delay can dictate the scheduling (insertion)
of the nop operation as part of the stream II instruction
stream in order to follow the time semantic relationship of
the stream I and stream II instructions.

In one embodiment, the bits of the alignment hole for the
stream [ instructions can represent a binary number that is
added to a running stream I nop counter associated with the
stream [ instructions. In this case, the bits of the alignment
hole for successive stream I instructions accumulate to
specify a desired count of implicit nop instructions associ-
ated with the stream [ instructions The stream [ nop counter
can be decremented following decode cycles of the decode
stage 209A to follow the desired count. The decode stage
209A interprets the bits of the alignment hole in a stream |
instruction to set or update the stream I nop counter and
controls stall operations performed by the decode stage
209B for the decode cycles specified by the stream I nop
counter until the stream I nop counter expires. Similarly, the
bits of the alignment hole for the stream II instructions can
represent a binary number that is added to a running stream
II nop counter associated with the stream II instructions. In
this case, the bits of the alignment hole for successive stream
1T instructions accumulate to specify a desired count of
implicit nop instructions associated with the stream II
instructions The stream II nop counter can be decremented
following decode cycles of the decode stage 209B to follow
the desired count. The decode stage 209B interprets the bits
of the alignment hole in a stream II instruction to set or
update the stream II nop counter and controls stall opera-
tions performed by the decode stage 209A for the decode
cycles specified by the stream II nop counter until the stream
II nop counter expires.

Of course, it can happen that the needed stall operations
in either or both instruction streams exceeds the amount
cycles that can be encoded in the alignment hole 110 of the
instruction streams. This can be dealt with by some other
mechanism, such as by an explicit lag-extension operation in
one or both of the instruction streams or by inserting a
non-elided no-op instruction.

FIG. 3 is a schematic diagram that illustrates an exem-
plary embodiment of the decode stage 209A of FIG. 2 for
decoding a stream I instruction. The decode stage 209A
assumes that the stream I instruction has been loaded into a
double instruction shifter 300, which is configured to pro-
cess two cache lines and shift the cache lines such that the
current stream I instruction is aligned in the lower order bits
of the double instruction shifter 300. This alignment opera-
tion can be performed as part of the instruction fetch process
and thus conceptually can be part of the instruction buffer
207A. The decode stage 209A includes a number of sub-
stages (for example, the five sub-stages labeled 0,1, 2, 3 and
4) arranged in a parallel-pipelined configuration. Each sub-
stage carries out a number of operations in a parallel manner
as shown.

In sub-stage 0, header processing circuitry 302 operates
on the header 102 of the current stream I instruction as
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supplied by the double instruction shifter 300 to process the
length field 112 and the block fields 114 of the header 102.
The header processing circuitry 302 uses the length field 112
of the header 102 as well as the block field 114 of the header
102 that relates to the number of slots in Block 2R of the
current stream I instruction in order to derive control signals
that are supplied the double instruction shifter 300 for use in
314 of sub-stage 1 as described below. The header process-
ing circuitry 302 also uses the block field 114 of the header
102 that relates to the number of slots in Block 1F of the
current stream I instruction in order to derive control signals
that are supplied to the gate logic 310 for use in sub-stage 1
as described below. The header processing circuitry 302 also
uses the block field 114 of the header 102 that relate to the
number of slots in Block 2F of the current stream I instruc-
tion in order to derive control signals that are supplied to the
Block 2F shifter logic for use in 312 of sub-stage 1 as
described below. The header processing circuitry 302 also
uses the block fields 114 of the header 102 that relate to the
number of slots in Blocks 3F and 3R of the current instruc-
tion in order to derive control signals that are supplied to the
block 3F shifter logic and to block 3R shifter logic for use
in 324 and 325 in sub-stage 2 as described below.

Furthermore, in sub-stage 0, the maximum number of
possible bits for opcodes of Block 1F of the current stream
I instruction as stored in the double instruction shifter 300
are passed from the double instruction shifter 300 to an array
of parser/decoder circuits 304. The array of parser/decoder
circuits 304 is configured to perform speculative parsing and
decoding on the supplied opcode bits for the predefined
maximum number of slots and corresponding opcodes for
Block 1F as constrained by the design of the instruction set
architecture of the processor. The speculative parsing and
decoding of Block 1F can involve parsing the bits of Block
1F into smaller slot-sized units according to the logical
arrangement of slots within Block 1F and decoding the
opcodes of the units to generate control signals for execution
of the opcodes of Block 1F. The parsing and decoding
operations are speculative in nature because the number of
bits for the wvalid slots of Block 1F for the particular
instruction are unknown. However, the alignment of the
slots of Block 1F for the particular instruction is known
(offset from the instruction address by the fixed-length of the
header 102) and the pre-defined length of each Block 1F slot
and corresponding opcode is also known. These constraints
can be used to speculatively parse and decode the maximum
number of slots for Block 1F, even though some of the slots
are invalid.

Furthermore, in sub-stage 0, the bundle 104 for the
current stream I instruction (or portions thereof) as stored in
the double instruction shifter 300 is loaded into shifter logic
for Block 2F (306) as well as into the shifter logic for Block
3F (308) as well as into the shifter logic for block 3R (309).

In sub-stage 1, the gate logic 310 is configured to use the
control signals supplied by the header processing circuitry
302 to selectively pass (or ignore) the results of the specu-
lative decode operations performed by the array of parser/
decoder circuits 304 for supply (issue) to the functional units
of the execution logic 209 that execute the opcodes of the
slots of Block 1F in sub-stage 2. In this manner, the block
field 114 of the header 102 that relates to the number of slots
in Block 1F of the current stream I instruction is processed
by the header processing circuitry 302 and the gate logic 304
such that only the decode results of valid slots within Block
1F are supplied (issued) to the functional units of the
execution logic 209 that execute the operations of the slots
of' Block 1F, and the decode results for slots that are not part
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of Block 1F are ignored. The execution by the functional
units of execution logic 209 can involve parallel execution
of multiple opcodes in accordance with the valid results of
the speculative decode operations output by the array 304.

Furthermore, in 314 of sub-stage 1, the double instruction
shifter 300 is configured to use the control signals supplied
by the header processing circuitry 302 in order to isolate and
align the opcodes of Block 2R of the current stream I
instruction. The opcodes of Block 2R of the current stream
I instruction can be output from the double instruction
shifter 300 in a format (such as a right-aligned format or
other predefined format) suitable for processing by the array
of parser/decoder circuits 322. The isolated bits of the
opcodes for Block 2R of the current stream I instruction as
output from the double instruction shifter 300 are loaded
into the array of parser/decoder circuits 322 for processing
in sub-stage 2 as described below. In controlling the opera-
tion of the double instruction shifter 300 in isolating the bits
for the opcodes of Block 2R, the bit position for the one end
of Block 2R that is adjacent the tail end of the envelope 104
can be derived from the length field 112 of the header 102,
and the bit position for the other end of Block 2R that is
adjacent Block 3R can be derived from the block field 114
of the header 102 that relates to the number of slots in Block
2R. Furthermore, the double instruction shifter 300 is con-
figured to use the control signals supplied by the header
processing circuitry 302 in order to perform bit shift opera-
tions that align the next sequential instruction within the
lower order bits of the double instruction shifter 300. In this
manner, the length field 112 of the header 102 that relates to
the length of the instruction is processed by the header
processing circuitry 302 to perform bit shifting operations
that align the next sequential instruction within the double
instruction shifter 300 (for supply to the header processing
circuitry 302, decoder circuit array 304 and shifter logic
306/308/309 in the next cycle).

Furthermore, in sub-stage 1, the block 2F shifter logic
(312) is configured to use the control signals supplied by the
header processing circuitry 302 in order to isolate and align
the opcodes of Block 2F of the current stream I instruction.
The opcodes of block 2F of the current stream I instruction
can be output from the block 2F shifter logic in a format
(such as a left-aligned format or other predefined format)
suitable for processing by the array of parser/decoder cir-
cuits 320. The isolated bits of the opcodes for block 2F of the
current stream [ instruction as output from the block 2F
shifter logic are loaded into the array of parser/decoder
circuits 320 for processing in sub-stage 2 as described
below. In controlling the operation of the block 2F shifter
logic in isolating the bits for the opcodes of Block 2F, the bit
position for the one end of Block 2F that is adjacent block
1F can be derived from the block field 114 of the header 102
that relates to the number of slots in Block 2F and the fixed
length of the header 102, and the bit position for the other
end of Block 2F that is adjacent Block 3F can be derived
from the block field 114 of the header 102 that relates to the
number of slots in Block 2F.

In sub-stage 2, the array of parser/decoder circuits 320 is
configured to perform parallel fixed-length parsing and
decoding for each one of the opcodes (slots) of Block 2F
represented by the bits passed from the block 2F shifter
logic. The parsing and decoding of Block 2F can involve
parsing the bits of Block 2F into smaller slot-sized units
according to the logical arrangement of slots within Block
2F and decoding the opcodes of the units to generate control
signals for execution of the opcodes of Block 2F. The results
of such parallel fixed-length parsing and decode operations
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are output by the array 320 for supply (issue) to the
functional units of the execution logic 209 that execute the
opcodes of the slots of Block 2F of the current stream I
instruction in sub-stage 3. The execution by the functional
units of execution logic 209 can involve parallel execution
of multiple opcodes of Block 2F in accordance with the
results of the decode operations output by the array 322.

Furthermore, in sub-stage 2, the array of parser/decoder
circuits 322 is configured to perform parallel fixed-length
parsing and decoding for each one of the opcodes (slots) of
Block 2R represented by the bits passed from the double
instruction shifter 300. The parsing and decoding of Block
2R can involve parsing the bits of Block 2R into smaller
slot-sized units according to the logical arrangement of slots
within Block 2R and decoding the opcodes of the units to
generate control signals for execution of the opcodes of
Block 2R. The results of such parallel fixed-length parsing
and decode operations are output by the array 322 for supply
(issue) to the functional units of the execution logic 209 that
execute the opcodes of the slots of Block 2R in sub-stage 3.
The execution by the functional units of execution logic 209
can involve parallel execution of multiple opcodes of Block
2R in accordance with the results of the decode operations
output by the array 322.

Furthermore, in sub-stage 2, the block 3F shifter logic
(324) is configured to use the control signals supplied by the
header processing circuitry 302 in order to isolate and align
the opcodes of Block 3F of the current stream I instruction.
The opcodes of Block 3F of the current stream I instruction
can be output from the block 3F shifter logic in a format
(such as a left-aligned format or other predefined format)
suitable for processing by the array of parser/decoder cir-
cuits 326. The isolated bits of the opcodes for Block 3F of
the current stream I instruction as output from the block 3F
shifter logic are loaded into the array of parser/decoder
circuits 326 for processing in sub-stage 3 as described
below. In controlling the operation of the block 3F shifter
logic in isolating the bits for the opcodes of Block 3F, the bit
position for the one end of Block 3F that is adjacent Block
2F can be derived from the bit position of the adjacent end
of Block 2F, and the bit position for the other end of Block
3F can be derived from the block field 114 of the header 102
that relates to the number of slots in Block 3F.

Furthermore, in sub-stage 2, the block 3R shifter logic
(325) is configured to use the control signals supplied by the
header processing circuitry 302 in order to isolate and align
the opcodes of Block 3R of the current stream I instruction.
The opcodes of block 3R of the current stream I instruction
can be output from the block 3R shifter logic in a format
(such as a right-aligned format or other predefined format)
suitable for processing by the array of parser/decoder cir-
cuits 328. The isolated bits of the opcodes for Block 3R of
the current stream [ instruction as output from the block 3R
shifter logic are loaded into the array of parser/decoder
circuits 328 for processing in sub-stage 3 as described
below. In controlling the operation of the block 3R shifter
logic in isolating the bits for the opcodes of Block 3R, the
bit position for the one end of Block 3R that is adjacent
Block 2R can be derived from the bit position of the adjacent
end of Block 2R, and the bit position for the other end of
Block 3R can be derived from the block field 114 of the
header 102 that relates to the number of slots in Block 3R.

In sub-stage 3, the array of parser/decoder circuits 326 is
configured to perform parallel fixed-length parsing and
decoding for each one of the opcodes (slots) of Block 3F
represented by the bits passed from the block 3F shifter. The
parsing and decoding of Block 3F can involve parsing the
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bits of Block 3F into smaller slot-sized units according to the
logical arrangement of slots within Block 3F and decoding
the opcodes of the units to generate control signals for
execution of the opcodes of Block 3F. The results of such
parallel fixed-length parsing and decode operations are
output by the array 326 for supply (issue) to the functional
units of the execution logic 209 that execute the opcodes of
the slots of Block 3F. The execution by the functional units
of execution logic 209 can involve parallel execution of
multiple opcodes of Block 3F in accordance with the results
of the decode operations output by the array 326.

Furthermore, in sub-stage 3, the array of parser/decoder
circuits 328 is configured to perform parallel fixed-length
decoding for each one of the opcodes (slots) of Block 3R
represented by the bits passed from the block 3R shifter. The
parsing and decoding of Block 3R can involve parsing the
bits of Block 3R into smaller slot-sized units according to
the logical arrangement of slots within Block 3R and decod-
ing the opcodes of the units to generate control signals for
execution of the opcodes of Block 3R. The results of such
parallel fixed-length parsing and decode operations are
output by the array 328 for supply (issue) to the functional
units of the execution logic 209 that execute the opcodes of
the slots of Block 3R. The execution by the functional units
of execution logic 209 can involve parallel execution of
multiple opcodes of Block 3R in accordance with the results
of the decode operations output by the array 328.

Furthermore, in 330 of sub-stage 3, the bits of the align-
ment hole 110, if any, of the current stream I instruction are
isolated. As shown in FIG. 1A, the alignment hole is located
between the last operation block forward group of operation
blocks (i.e., Block 3F in the example of FIG. 1C) and the last
operation block of the reverse group of operation blocks
(i.e., Block 3R in the example of FIG. 1C) of the stream I
instruction. The alignment hole 110 can be isolated from the
output of the block 3F shifter logic and/or the output of the
block 3R shifter logic. Note that location of the alignment
hole 110 is variable within the bundle 104 (depending on the
size of the forward group of operation blocks as well as the
size of the reverse group of operations blocks) and is not
specified by information in the header 102. However, the bit
position for the one end of the alignment hole adjacent Block
3F can be derived from the bit position of the adjacent end
of Block 3F, and the bit position for the other end of the
alignment hole adjacent Block 3R can be derived from the
bit position of the adjacent end of Block 3R.

Finally, in 332 of sub-stage 4, the bits of the alignment
hole as isolated in 330 are processed to set or update a
running stream | nop-counter maintained by the decode
stage 209A. In this embodiment, the bits of the alignment
hole represent a binary number that is added to the running
stream | nop counter, which can be decremented on decode
cycle(s) performed by the decode stage 209A. Thus, the bits
of'the alignment hole for successive stream I instructions are
accumulated by the running stream I nop counter to specify
a desired count of implicit nop instructions, which is dec-
remented in subsequent decode cycles of the decode stage
209A to follow the desired count. The decode stage 209A is
further configured to initiate stall operations performed by
the decode stage 209B for cycles specified by the stream [
nop counter until the stream I nop counter expires.

In one embodiment, the output of the shifter logic circuits
for each respective operation block in the instruction encod-
ing (e.g., Blocks 1F, 2F, 3F, 3R, 2R) can be supplied over
multiple taps (typically identified by tap numbers) that
correspond to different logical shift operations (positions
where the shift can start). Note that the length of the bundle
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in the decode stage 209A (the granularity) may not be the
same as the byte length. For example, bundles of up to four
two-byte operations need only four shifter taps, although the
byte length may be as much as eight bytes. Moreover, each
respective block shifter logic circuit can be the equivalent of
an N-way multiplexer tree where N is the number of possible
shifter tap numbers. In this case, the speed of each respective
block shifter logic circuit is logarithmic in N and thus there
is a limit to the number of different bundle lengths that can
be shifted in one cycle. In practice this is not a constraint for
up to 64 different bundle sizes. In this configuration, the
block field(s) 114 of the header 102 can employ shifter tap
numbers that relate to the number of slots in each respective
block. These shifter tap numbers are processed and output to
the block shifter circuits in order to isolate the respective
operation blocks of the encoding. Similarly, the output of the
double instruction shifter circuit can be supplied over mul-
tiple taps (typically identified by tap numbers) that corre-
spond to different logical shift operations (positions where
the shift can start). Thus, the length field 112 of the header
102 can employ a shifter tap number that relates to the total
length of the instruction for use by the double instruction
shifter in isolating the bits of Block 2R of the current stream
I instruction and for use in aligning the bytes of the next
instruction.

Note that similar operations as those described above with
respect to FIG. 3 are performed by the decode stage 209B for
stream I instructions. In these operations, the forward
direction of the forward group of operation blocks and the
reverse direction of the reverse group of operation blocks for
the stream II instruction flipped in the memory space as is
evident from FIG. 1E. Moreover, the decode stage 209B can
be configured to isolate bits of the alignment hole, if any,
that is located between the last operation block of the
forward group of operation blocks and the last operation
block of the reverse group of operation blocks of the stream
1I instruction. The bits of the alignment hole are processed
to set or update a running stream Il nop-counter maintained
by the decode stage 209B. The bits of the alignment hole
represent a binary number that is added to the running
stream 11 nop counter, which can be decremented on decode
cycle(s) performed by the decode stage 209A. Thus, the bits
of the alignment hole for successive stream II instructions
are accumulated by the running stream II nop counter to
specify a desired count of implicit nop instructions, which is
decremented in subsequent decode cycles of the decode
stage 209B to follow the desired count. The decode stage
209B is further configured to initiate stall operations per-
formed by the decode stage 209 A for cycles specified by the
stream 11 nop counter until the stream Il nop counter expires.

In other embodiments, the alignment hole and the zero or
more nop operations that are encoded therein can be used for
instruction streams of other variable-length instruction for-
mats, which can be decoded in a manner similar the instruc-
tion decoding mechanism described herein.

Note that the block format internal to a bundle can
preclude certain shifter tap numbers for the blocks and the
maximum shifter tap number is rarely a power of two which
would fit naturally in a bit field in the header. Thus, there can
be some left-over and unused shifter tap numbers. In one
embodiment, certain ones of these unused shifter tap num-
bers can be used as part of the block field 114 of the header
102 to represent instructions with different formatting for the
bit bundle and thus alternate encodings. To support such
alternate encodings, the header processing circuit of the
decode stage 207 can be configured to process (parse) the
block field 114 of the header 102 to identify the specific
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shifter tap number corresponding to a given alternate encod-
ing and enable decode circuitry that processes the alternate
encoding of the bit envelop to generate appropriate control
signals for execution of one or more operation represented
by the alternate encoding in the execution logic 211A, 211B.
There have been described and illustrated herein several
embodiments of a computer processor and corresponding
method of operations. While particular embodiments of the
invention have been described, it is not intended that the
invention be limited thereto, as it is intended that the
invention be as broad in scope as the art will allow and that
the specification be read likewise. For example, the func-
tionality of the CPU 101 as described herein can be embod-
ied as a processor core and multiple instances of the pro-
cessor core can be fabricated as part of a single integrated
circuit (possibly along with other structures). It will there-
fore be appreciated by those skilled in the art that yet other
modifications could be made to the provided invention
without deviating from its spirit and scope as claimed.

What is claimed is:

1. A computer processor comprising:

first and second multi-stage instruction processing com-
ponents that are configured to access and process in
parallel instructions belonging to the distinct first and
second instruction streams that have a predefined timed
semantic relationship, wherein at least one of the first
and second instruction streams includes variable-length
instructions having a bit bundle bounded by a head end
and a tail end with an alignment hole within the bit
bundle, wherein the alignment hole includes bits that
specify a count of implicit nop operations that follows
the timed semantic relationship between the first and
second instruction streams;

wherein first and second multi-stage instruction process-
ing components each include an instruction buffer
coupled to a decode stage, wherein the instruction
buffer for a particular one of the first and second
multi-stage instruction processing components is con-
figured to store at least one variable-length instruction,
and the decode stage for the particular one of the first
and second multi-stage instruction processing compo-
nents is configured to i) decode operations encoded by
the variable-length instruction stored by the instruction
buffer for the particular one of the first and second
multi-stage instruction processing components, ii) iso-
late and interpret the bits of the alignment hole of the
variable length instruction, and iii) initiate a number of
nop operations as represented by the count of implicit
nop operations specified by the bits of the alignment
hole in order to follow the timed semantic relationship
between the first and second instruction streams.

2. A computer processor according to claim 1, wherein:

the alignment hole has a variable location within the bit
bundle, and the variable-length instruction has a header
that does not specify the location of the alignment hole
within the bit bundle.

3. A computer processor according to claim 1, wherein:

the instruction buffer and the decode stage of the first
multi-stage processing component access and process
the first instruction stream, wherein the decode stage of
the first multi-stage processing component is config-
ured to interpret the bits of the alignment hole of the
variable length instruction and initiate a number of nop
operations as represented by the count of implicit nop
operations specified by the bits of the alignment hole
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which is performed by the second multi-stage process-
ing component in processing the second instruction
stream.

4. A computer processor according to claim 1, wherein:

the instruction buffer and the decode stage of the second
multi-stage processing component access and process
the second instruction stream, wherein the decode stage
of the second multi-stage processing component is
configured to interpret the bits of the alignment hole of
the variable length instruction and initiate a number of
nop operations as represented by the count of implicit
nop operations specified by the bits of the alignment
hole which is performed by the first multi-stage pro-
cessing component in processing the first instruction
stream.

5. A computer processor according to claim 1, wherein:

the count of implicit nop operations specified by the bits
of the alignment hole is accumulated in a running
counter maintained by the decode stage of the particu-
lar one of the first and second multi-stage instruction
processing components, wherein the running counter is
updated according to decode cycles performed by the
decode stage of the particular one of the first and
second multi-stage instruction processing components.

6. A computer processor according to claim 1, wherein:

the decode stage of the particular one of the first and
second multi-stage instruction processing components
is configured to interpret the bits of the alignment hole
of the variable length instruction and initiate a number
of nop operations as represented by the count of
implicit nop operations specified by the bits of the
alignment hole in the current decode cycle or in one or
more cycles that follows the current decode cycle.

7. A computer processor according to claim 1, wherein:

the first and second instruction streams are part of a
plurality of instruction blocks stored in a memory
system, wherein each instruction block is associated
with an entry address with the first and second instruc-
tion streams located within the instruction block,
wherein the first instruction stream has an instruction
order that logically extends in a direction of increasing
memory space relative to said entry address, and the
second instruction stream has an instruction order that
logically extends in a direction of decreasing memory
space relative to said entry address; and

the first and second multi-stage instruction processing
components are configured to access and process in
parallel instructions belonging to the first and second
instruction streams of a particular instruction block.

8. A computer processor according to claim 7, wherein:

the first instruction stream comprises instruction of a first
class different from a second class of instructions in the
second instruction stream in the same instruction block;

the first multi-stage instruction processing component is
configured to process instructions belonging to the first
class of instructions; and

the second multi-stage instruction processing component
is configured to process instructions belonging to the
second class of instructions.

9. A computer processor according to claim 8, wherein:

the first class of instructions includes instructions that
perform flow-control operations and instructions that
perform memory reference operations; and

the second class of instructions includes instructions that
perform computational operations.
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10. A computer processor according to claim 1, wherein:

the first and second multi-stage instruction processing
components each further include a program counter, an
instruction fetch unit, and execution logic.

11. A computer processor according to claim 1, wherein:

the bit bundle includes a plurality of fixed-length slots,
wherein the plurality of fixed-length slots are logically
partitioned into a plurality of distinct blocks with a first
group of blocks extending from the head end of the bit
bundle toward the tail end of the bit bundle and a
second group of blocks extending from the tail end of
the bit bundle toward the head end of the bit bundle,
wherein the second group of blocks includes a tail end
e block disposed adjacent the tail end of the bit bundle,
and wherein separate and distinct operations are
encoded in the fixed-length slots of the first group of
blocks and in the fixed-length slots of the second group
of blocks; and

the decode stage of the particular one of the first and
second multi-stage instruction processing components
is configured to process the variable-length instruction
by decoding at least one operation defined by a fixed-
length slot of a particular block belonging to the first
group of blocks in parallel with decoding at least one
different operation defined by a fixed-length slot of the
tail end block.

12. A computer processor according to claim 11, wherein:

the alignment hole is located between the first group of
blocks and the second group of blocks.

13. A computer processor according to claim 12, wherein:

the decode stage of the particular one of the first and
second multi-stage instruction processing components
processes the variable-length instruction by parsing and
decoding operations for the fixed-length slots of each
one of the first group of blocks in a sequential block-
by-block manner that follows the logical forward order
of the first group of blocks, and parsing and decoding
operations for the fixed-length slots of each one of the
second group of blocks in a sequential block-by-block
manner that follows the logical reverse order of the
second group of blocks.

14. A computer processor according to claim 13, wherein:

the decode stage of the particular one of the first and
second multi-stage instruction processing components
is configured to process the alignment hole after pars-
ing and decoding the operations for the fixed-length
slots of all of the first group of blocks as well as the
operations for the fixed-length slots of all of the second
group of blocks.

15. A method comprising:

storing in a memory system distinct first and second
instruction streams that have a predefined timed seman-
tic relationship, wherein at least one of the first and
second instruction streams includes variable-length
instructions having a bit bundle bounded by a head end
and a tail end with an alignment hole within the bit
bundle, wherein the alignment hole includes bits that
specify a count of implicit nop operations that follows
the timed semantic relationship between the first and
second instruction streams;

configuring first and second multi-stage instruction pro-
cessing components of a computer processor to access
and process in parallel instructions belonging to the
first and second instruction streams stored in the
memory system,

wherein the first and second multi-stage instruction pro-
cessing components each include an instruction buffer
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coupled to a decode stage, wherein the instruction
buffer for a particular one of the first and second
multi-stage instruction processing components is con-
figured to store at least one variable-length instruction,
and wherein the decode stage for the particular one of
the first and second multi-stage instruction processing
components is configured to i) decode operations
encoded by the variable-length instruction, ii) isolate
and interpret the bits of the alignment hole of the
variable length instruction, and iii) initiate a number of
nop operations as represented by the count of implicit
nop operations specified by the bits of the alignment
hole in order to follow the timed semantic relationship
between the first and second instruction streams.

16. A method according to claim 15, wherein:

the alignment hole has a variable location within the bit
bundle, and the variable-length instruction has a header
that does not specify the location of the alignment hole
within the bit bundle.

17. A method according to claim 15, wherein:

the variable-length instruction is stored and processed by
the instruction buffer and decode stage of the first
multi-stage processing component as part of accessing
and processing the first instruction stream, wherein the
decode stage of the first multi-stage instruction pro-
cessing component is configured to interpret the bits of
the alignment hole of the variable length instruction
and initiate a number of nop operations as represented
by the count of implicit nop operations specified by the
bits of the alignment hole which is performed by the
second multi-stage processing component in process-
ing the second instruction stream.

18. A method according to claim 15, wherein:

the variable-length instruction is stored and processed by
the instruction buffer and decode stage of the second
multi-stage processing component as part of accessing
and processing the second instruction stream, wherein
the decode stage of the second multi-stage instruction
processing component is configured to interpret the bits
of the alignment hole of the variable length instruction
and initiate a number of nop operations as represented
by the count of implicit nop operations specified by the
bits of the alignment hole which is performed by the
first multi-stage processing component in processing
the first instruction stream.

19. A method according to claim 15, wherein:

the count of implicit nop operations specified by the bits
of the alignment hole of the variable length instruction
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is accumulated in a running counter, wherein the run-
ning counter is updated according to decode cycles
performed as part of the method.

20. A method according to claim 15, wherein:

the count of implicit nop operations specified by the bits
of the alignment hole is interpreted to initiate a number
of nop operations performed in a current decode cycle,
or in a cycle that follows the current decode cycle.

21. A method according to claim 15, wherein:

the bit bundle includes a plurality of fixed-length slots,
wherein the plurality of fixed-length slots are logically
partitioned into a plurality of distinct blocks with a first
group of blocks extending from the head end of the bit
bundle toward the tail end of the bit bundle and a
second group of blocks extending from the tail end of
the bit bundle toward the head end of the bit bundle,
wherein the second group of blocks includes a tail end
block disposed adjacent the tail end of the bit bundle,
and wherein separate and distinct operations are
encoded in the fixed-length slots of the first group of
blocks and in the fixed-length slots of the second group
of blocks; and

the processing of the variable-length instruction involves
decoding at least one operation defined by a fixed-
length slot of a particular block belonging to the first
group of blocks in parallel with decoding at least one
different operation defined by a fixed-length slot of the
tail end block.

22. A method according to claim 21, wherein:

the alignment hole is located between the first group of
blocks and the second group of blocks.

23. A method according to claim 22, wherein:

the processing of the variable-length instruction involves
parsing and decoding operations for the fixed-length
slots of each one of the first group of blocks in a
sequential block-by-block manner that follows the logi-
cal forward order of the first group of blocks, and
parsing and decoding operations for the fixed-length
slots of each one of the second group of blocks in a
sequential block-by-block manner that follows the logi-
cal reverse order of the second group of blocks.

24. A method according to claim 22, wherein:

the alignment hole is processed after parsing and decod-
ing the operations for the fixed-length slots of all of the
first group of operation blocks as well as the operations
for the fixed-length slots of all of the second group of
operations blocks.
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