a2 United States Patent

US009747216B2

10) Patent No.: US 9,747,216 B2

Godard et al. 45) Date of Patent: Aug. 29,2017
(54) COMPUTER PROCESSOR EMPLOYING (56) References Cited
BYTE-ADDRESSABLE DEDICATED
MEMORY FOR OPERAND STORAGE U.S. PATENT DOCUMENTS
(71) Applicant: Mill Computing, Inc., Palo Alto, CA 5,761,490 A ¥ 6/1998 Hunt ..o G06F7?/23/§‘1‘§
(US) 6,970,996 B1* 11/2005 Green GOGF 9/30043
712/201
(72) Inventors: Roger Rawson Godard, East Palo 7127592 B2 10/2006 Abraham ef al
Alto, CA (US); Arthur David Kahlich, 2015/0186240 Al* 7/2015 Kegel v GOGF 11/3065
Sunnyvale, CA (US); Sebastien Paul 710/18
Maurice Mirolo, San Francisco, CA
(US); David Arthur Yost, Los Altos,
CA (US) OTHER PUBLICATIONS
(73) Assignee: Mill Computing, Inc., Palo Alto, CA Spills, Fills, and Kills, An Architecture for Reducing Register-
US) Memory Traffic, Mattan Erez et al., Computer Systems Laboratory,
Stanford University, 2000.
(*) Notice: Subject to any disclaimer, the term of this))
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 360 days.
(21) Appl. No.: 14/311,988 Primary Examiner — Reginald Bragdon
) Assistant Examiner — Mehdi Namazi
(22) Filed: Jun. 23, 2014 (74) Attorney, Agent, or Firm — Gordon & Jacobson,
(65) Prior Publication Data PC.
US 2015/0370717 Al Dec. 24, 2015
(57) ABSTRACT
(51) Imt. ClL
GOG6F 12/08 (2016.01) A computer processor including a first memory structure that
GO6F 12/02 (2006.01) operates over multiple cycles to temporarily store operands
GOG6F 12/0875 (2016.01) referenced by at least one instruction. A plurality of func-
GO6F 17/30 (2006.01) tional units performs operations that produce and access
GOGF 9/50 (2006.01) operands stored in the first memory structure. A second
(52) US. CL memory structure is provided, separate from the first
CPC G06F 12/0875 (201301), G06F 9/50 memory structure. 'I'he Second memory structure is Conﬁg_
(2013.01); GO6F 12/023 (2013.01); GOGF ured as a dedicated memory for storage of operands copied
. 1730 .(201?'01); GOGF 2212/452 (2013.01) from the first memory structure. The second memory struc-
(58) Field of Classification Search ture is organized with a byte-addressable memory space and

CPC GO6F 12/0875; GO6F 12/023; GO6F 17/30;
GOG6F 9/50; GO6F 2212/452; GO6F
9/30098; GOG6F 9/3012; GO6F 9/30134;
GOG6F 9/30138; GO6F 9/342; GO6F
9/3824; GO6F 9/383; GOGF 9/3832
See application file for complete search history.

each operand stored in the second memory structure is
accessed by a given byte address into the byte-addressable
memory space.

21 Claims, 22 Drawing Sheets

: l
| -

| \.<~—~\;‘,<~-———-\‘.<——--1,<-~———\.<——-—~ 1

s 201 20 a1 i 1

¢ xo 207 /’ : 20t | X

!)y ¥ ¥ ¥ £ ¥ [!
|

§ 1

! 1 Uz U3 U4 FUnN t I

: ! 1

i 1

203

: | ' | | b !

i 1

| { Belt Storage Elements ' ! |
!

N < < T i 1

! * A N X | |

1 e I i e e |
|

! !

! 1
}

| 1

|

Belt interconnect Network 205 J

Exacution Logic 109

U.S. Patent Aug. 29, 2017 Sheet 1 of 22 US 9,747,216 B2

101
Memory System //}
CPU/Core
(102 A A
e S e]
[\ Y |
I L1 Instruction Cache L1 Data Cache I
| |
| 1 13 -"”'// 1 A {\\T *5 5 |
| 103 ‘
| r i
| l
| > instruction Fetch Unit I
| |
| i
| |
, Y 105 :
I instruction Buffer “’// !
! 111 !
I 4 z
| Y |
| 107 |
Program |
: Counter € Decode Stage . :
| i
| Y 109 |
| R . L |
| Execution Logic |
] I
| |
b o o o .

U.S. Patent Aug. 29, 2017 Sheet 2 of 22 US 9,747,216 B2

Fotoh g DIQOOC0E ol GGG e FU@OUTE e (2 2HrR
FIG. 18

US 9,747,216 B2

Sheet 3 of 22

Aug. 29, 2017

U.S. Patent

Z 'Old
Vel 601 J1BOT UORNDEXY
\\ GO7 HIOMISN JosUUIODIBIU] 1ag

|||||||| Lz\..rAI —_—— L,\..\,AAI —_—— Lf\:s, = ~ — L,\/\,
" ™ Y AN A}
_ sjuswalg abeiols)eg
|

A A
|
_ mmm\\\ ﬁ a H
|
" N N4 . N4 e Zn4 L N4
|
| 7 AT AT A P
_ LMo AR T AT 74 L L 10T
U T W e—— L e — S T em— S S

US 9,747,216 B2

Sheet 4 of 22

Aug. 29, 2017

U.S. Patent

€L "Oid

B G EE0 0 0 sjusiner alungs

o

O} LU 10 By

3 DL O (LS
i oy Burpionns ??53 o_

HOAD 1Kau
wc.

yoEs ssaInpe oo
i Y -4
st ” xM ER briX VY S0ATY U PEIDLG § X SI0AT U pE0nD0id | 2K SI0A0 L pRORpN
3 (R D4 SR T PEONEGS
S RSP SR Ut PG R L puRi »ao 7 DUBISAD L% puessdo
L pussedn S, " pugsad i # pusssd(o ~)
BT ST e s "
BEEIOTS BEERGE SBEIGTE — IS
N ¥ ¢ 7 : 0
SRBIppY FERIPDY SEBIPPY SSUPHY SERIPPY s88s0pY
wfio ey jembo aBe ieaiboy feoifony

HOU BUL 0 IO 30 (I PODDE &1 SpuRiads MBL $8 §BG
g spusteie alinaois 9uy 10 feas au 4o g spusado

¥e Ol

HE a0 SuBeR 358018 B4 J0 1Dy

By} 18 POLOSU BUB LY I0AT i peonplud spusiedn

3 PRI
Li pusiad
itetvie

Lo
HOAD 1 DOOND

I

L pussad

E&mmmw

L REBAC W DRONPNy

ﬁw n:Ea\wO

%mﬁw

&
i t %'
A0 W wxﬁ.# ey BRALY UL POONDOLY
L pusiado e oo oo L# pusdn
WsE Hitc e
N ¥
SERBIIDY SeRIPLY
poifion feuBoT

La)

SSBIDDY
iembory

SHESINEY
oo

SERUDDY
semmbior

G
SHBINDY
arnBion

[4
FOAD

1Y
BiuAn

..

US 9,747,216 B2

Sheet 5 of 22

Aug. 29, 2017

U.S. Patent

vv "old

SHUM UOIDUNY

BPUINSUeD 03 puriado 4o} syied eleg

_\\ LOv

Soxnu | -Adusle]

S10}S e Wwioyy suopesdo
{(3pA2 aibuis) Aouaie) 158MO|
wio paonpoud spueiado 10§ suyed eyep

eor 4//

SSANW U-A3Ud3e)

R

S104S e wiosy suonessdo Aousie; saybiy
wioy paonpoid spueisdo jog syjed eyep

///v GO7 HIOMISN 13aUU0DISlU 1og

US 9,747,216 B2

Sheet 6 of 22

Aug. 29, 2017

U.S. Patent

g3y "Old

Jegssalo |

-Aousie|

SHUIS

520JN0s

U.S. Patent Aug. 29, 2017 Sheet 7 of 22 US 9,747,216 B2

501A | 501B Y Y
//} ///’ adder / e Latency-1 result
Eat~? tle 1" lyl
¥ \
shifter / A
» 503A 5038
lat-1 / //}
.~ Latency-3 result
P
lat-3
k 4 L 4
To lat-1 Tolat-3
output output
FU Slot P P

register register

FIG. 5A

U.S. Patent Aug. 29, 2017 Sheet 8§ of 22

501A 5018

\ Mult'er / FU
Slot
AN 7
\ shifter /

N\ /
adder

5034, 5038

\

lat-1

fat-2

Y

fat-3

Y

o fat-4

FIG. 5B

US 9,747,216 B2

U.S. Patent Aug. 29, 2017 Sheet 9 of 22 US 9,747,216 B2

o0 B
S
LA T SO
-
~
~
\"\
o0 \\.
\\
* w
W IJ o g_}
’ L
rs
o0 ’

601

8
Scratchpad ///

belt \\\\

logical

U.S. Patent Aug. 29, 2017 Sheet 10 of 22 US 9,747,216 B2

701
Spiller Unit _,..,——/‘/

A A A

203 ~

Belt Storage Elements

601 \\\

Y

Y

Scratchpad

Y

Memory Hierarchy

FIG.7

US 9,747,216 B2

Sheet 11 of 22

Aug. 29, 2017

U.S. Patent

8ol {1j2qQ wmummOm Sl syl lo

UG BU1 01 pBppE pue jaq jeniBoy s3a(eD
€ 9 g g ¢ € g / 2y} woy paidod ale uonerad) uinsy

ul syusuinbue se pasusiaRl spuessdo)
7 184 [e21Boj s,48)[eD

R (uopeiado e o3 Joud 518315 0}
8 3 9 8 8 € € 8 p3103584 Ajjeiul) yag eiboy sepe)

;;;;;;;;;;;;;;;;;;;;;;;;; o ¥ U3y - uopeiado uiniay

Arepunog A o

Cisl Ry

¥ 0 5 4 L 6 ¥ L yaq jeanboj seayen

(199 (e2150} 522(12)
mm_hmﬁmgg\\& 3U3 JO 1UCH} BY3 O3 PBpPE pue }aq [ed1bo)
3[PAD XX px X 18 L8 19 L E | gianen sy woiy paidod sie uonessdo e
- 4 y 3y ut siuswinbie se paduaiasl spueisdo)
pon : yaq [exibo seeyel
" M\ 5
A ¢ (Aydws se pazieiuy
AR A R O I B R y8q e2160] 59387
o) m ! m
;;;;;;;;;;;;;;;; e e et uny (e - uonessdo jjen

320 {e21bo} s, 8)jed

[s59ippe 0 ssappe
yag [e3ibo }og jed1bo

US 9,747,216 B2

Sheet 12 of 22

Aug. 29, 2017

U.S. Patent

P-ie7

£-1e7

A

A

-ieh

A

insay L-PPY
L-1e7

A

isppe

AN

SBYIYS /
AN

e
/

42,10

N\

!

H

veé 'Old

BpIO
UOIONASUY

92uUsnbag UOIIINIISU]

US 9,747,216 B2

Sheet 13 of 22

Aug. 29, 2017

U.S. Patent

18] <

£-1e -

HOSSY PRV |

-1 -
inssy
L-PpPY

HNSIY E-PPY |

L-3E1 -

lappe
/ AN
\ 1OHIYS /
Z AN
1015 \ BN /

P

g6 "Oid

PPy
L-ppPY \ﬂ
BRIO
UORIDNIISU]

22U3NHSS UCIIONIISUY

US 9,747,216 B2

Sheet 14 of 22

Aug. 29, 2017

U.S. Patent

-1e7 €
ynsey L-ppv |
£-3187 o .
Jnsay 36 "9ld
L-pPRY
UNSSY Z-PPY |
-127 I
ynsay
-ppy
Hns=Y PPy [
L-3E7 D
£-PRY
-pPpY
iappe
V4 A L-PpY
\ 19YIYs / 1RO
UCII2NAISUY
/ \,
1015 \ BUNW / a3usnbas UoIINsY|

P

US 9,747,216 B2

Sheet 15 of 22

Aug. 29, 2017

U.S. Patent

3jnsay
L-ppY

1nseY
-ppv

Hnsay
PPV

Hnsey L-ppy
-31€7

A

HNSSY -Ppy
€37

A

HNSOY £-PPRY
Z-1ef

A

HNs=Y y-PPyY
L-3€7

A

1015

{6 "oid
¥-PRY
PRy
PPy
Bppe
/ A\ L-ppY
\ I2HIYS / BpIG
UORINAISUY
/ N\
BN auanbag uoIPNISYY

US 9,747,216 B2

Sheet 16 of 22

Aug. 29, 2017

U.S. Patent

3jnsay
z-ppY

}nsay
E-PPY

ynsay
y-ppv

lnsay .
L-PPY abri01s Jo4NG IO 10IS IBYI0

Hnsay Z-ppv
-1€7

404 423s1Bou ndano uesea oy

HNSSY £-PPY
£-1e7

L.
-

A

UNsaY b-pPpy
-1

A

HNsaY S-PPY
L-1€7

A

3015

=46 'Oid
S-PpRY
PPy
PPy
-ppy
isppe
A\ L-ppY
DYy BpIO
UORNASUY
N\
193N FoUBNDSS UOIINIISU]

US 9,747,216 B2

Sheet 17 of 22

Aug. 29, 2017

U.S. Patent

VOT 'Ol

[|B1S 1NOY1IM 01 pauiniaJ aqg ued ‘patolsal

\

[1BIS INOYUM UDIHIMIDAO 3G Ued ‘pPanes

A

/

pedyojelds [ea130|

aAlloe

CRIE! aseq
H ﬁ
dy ds

US 9,747,216 B2

Sheet 18 of 22

Aug. 29, 2017

U.S. Patent

40T 'Sid
[JE3S INOYIM 01 PauINIal 3g Ued ‘palolsal

\
\ I : /

[JE1S INOY1IM USNIIMIDAO D UBD ‘PIABS

A A

\ | anes spasu “ J

/

pedydiesds jes1so| 23Uy dS

aseq

US 9,747,216 B2

Sheet 19 of 22

Aug. 29, 2017

U.S. Patent

J0T 'SH

{|_1S INOYIM 0] pauInial ag ued ‘palolsal

A

[|E1S INOYIIM UB1HIMISAO Bq UBD ‘PIAEBS

/

pedyoiesds ed150|

\ duines 19jids [
9AI0E ‘anes spasu

\ A
\ \f /

H

ERIET] dy dS

aseq

US 9,747,216 B2

Sheet 20 of 22

Aug. 29, 2017

U.S. Patent

aot oid
[|B3S INOYIIM 0} PauLInial ag ued ‘palolsal

\ \

[1E3S INOYHM USIHIMIBAO 2q UBD ‘PaAeS

) A

anioe

/o]

pedydiesds jedi30| muﬁﬁ 3seq

dy dS

US 9,747,216 B2

Sheet 21 of 22

Aug. 29, 2017

U.S. Patent

301 'Oi

[|E1S INOYLIM O3 pauinial 8¢ ued ‘palolsal

A

/ \

jel1s INoYIM Ua11UMIGAO 2§ Uued _u®>m.m

| A

/

pedyoleuos |ed130|

J [

gupiom Jajjids

d‘_oﬁmg spasu SAIIE

A
\ \f /

dd 90Uy aseq

US 9,747,216 B2

Sheet 22 of 22

Aug. 29, 2017

U.S. Patent

40T "Oid

[|EIS INOYIIM O3 PaUINIaL 9(UBD ‘Pal0lsal

) A

/ \

[|B1S INOYHM USIIJIMIBAC 3 UBD ‘PIAes

] A

/

pedysie.os |ed130|

aAloE

dd aseq
1 |
0UDdY dS

US 9,747,216 B2

1
COMPUTER PROCESSOR EMPLOYING
BYTE-ADDRESSABLE DEDICATED
MEMORY FOR OPERAND STORAGE

BACKGROUND

1. Field

The present application relates generally to computer
processors and, more specifically, to mechanisms for storing
and referencing transient operands that are produced and
consumed by the computer processors.

2. State of the Art

Computer processors execute operations on data. An
individual data value (an operand) is produced by some
producer operation, recorded, and then used later by one or
more other consumer operation. The time between produc-
tion and consumption by the last consumer is the lifetime of
the operand. Operands vary widely in lifetime, but lifetimes
can usually be loosely categorized into persistent (or global)
lifetimes that last for an appreciable fraction of total pro-
gram execution; local lifetimes that last for the duration of
a function or several statements in the program; and tran-
sient lifetimes that last for only portions of a single expres-
sion in the program. These categories are not sharp, and
programs exhibit a continuum of lifetimes, but the rough
grouping is strong enough that computer hardware usually
contains different storage means for operands of each cat-
egory. For example, persistent operands may use a software-
provided heap in memory, while local operands may use a
hardware-assisted stack and transient operands use a wholly
hardware register bank.

Transient operands are ubiquitous and very common. For
example, if the source program contains the expression
“A+B+C” then the computer will execute a first add opera-
tion of A and B, and then a second add operation of the result
of the first add operation to C. The A+B result is typically
transient and will be discarded as soon as it is consumed by
the second add operation, although it may have a longer
lifetime if the same A+B calculation appears elsewhere and
the intermediate result can be reused.

Many prior art computer processors employ a set of
general registers, which are storage devices that can hold a
single operand each. Machine operations like addition take
their arguments from and deliver their result to registers.
Thus, a register is the holding place for transient operands.
When the lifetime of an operand ends, the register holding
it can simply be overwritten by some other newly computed
operand. Register usage by a program is very high because
there are so many transients. Consequently, computer pro-
cessor designers go to great lengths to ensure that access to
registers is very fast and that there are enough registers to
hold any reasonable transient population. Operands that do
not fit in the available registers must be kept elsewhere,
typically in memory, and access to such spilled operands
takes tens to hundreds of times longer than access to a
register. Because of the speed advantage of registers, regis-
ters not needed for transients are commonly used for fre-
quently-referenced operands with more-than-transient life-
times, even very long lived global operands. Each extra
operand that can reside in the registers improves the speed
of the program by avoiding lengthy memory access. This
design force tends to cause designers to increase the number
of registers in a design, so that more operands can be register
resident. Balancing this force are two other effects of
increased register count: instruction entropy and hardware
complexity.

25

30

40

45

55

2

Entropy refers to the information-theoretic density of the
machine representation (the encoding) of instructions to be
executed. Each instruction must encode an indicator of the
operation to be performed (the opcode) and the places that
data arguments for the instruction must come from and
results go to (the addresses for the source and result oper-
ands). Typical computational operations (such as an add)
require two source operand addresses and one result operand
address, in addition to the opcode. The operand addresses
are register numbers when the arguments and results are in
registers. When a design increases the number of address-
able registers, it necessarily also increases the size of the
address required to indicate which register to use. Thus, if
there are eight registers (as in some early machines), an
operand address occupies three bits and a register-based add
operation uses nine bits for addressing, whereas if there are
128 registers (as in some recent machines), an operand
address occupies seven bits and an add requires 21 bits of
address.

Unfortunately, other considerations often dictate that
instructions themselves must occupy a whole power-of-two
number of bits, such as 16 or 32. Increasing the number of
registers (and hence the number of address bits in an
instruction) then necessarily reduces the number of bits
available for the opcode and other purposes. In practice, it is
impractical to have more than 32 registers while retaining a
fixed 32 bit instruction length. Moreover, extra registers
increase the total size of a program even if the design uses
a wider or variable-length instruction to admit more than 32
registers. The increased program size and decode complex-
ity may cause problems with the memory bandwidth and
instruction cache of the machine.

Besides the entropy effect, increasing the number of
registers also increases the complexity, chip area, and power
requirements of the machine. Each potential functional unit
consumer of an operand and each functional unit producer of
a result operand must be able to communicate with each
register, and thus involve connections that directly and
super-linearly increase the required chip area and power.
Moreover, modern processors typically include a bypass
network whose complexity increases non-linearly. The
bypass network is used to deal with pairs of operations that
have a producer-consumer relationship, i.e. the transient
result of the first is immediately used by the second. The
bypass network avoids the latency in moving the result
operand from the first operation into a register and then
fetching it again as a consumer operand for the second
operation. Instead, special hardware circuitry detects the
producer-consumer relation and the bypass network routes
the transient operand directly from the producing functional
unit (such as an adder) to the consumer without waiting for
the operand to reach the register. However, the bypass
network is often the critical timing path of the whole
machine, so any slowdown of the bypass network slows
down the execution of every operation. Consequently, the
design of a register-based machine reflects a balance
between the storage performance advantages of extra reg-
isters and the encoding and execution performance costs of
those registers.

However, a designer is not necessarily restricted to using
registers for transients. There are other architectural catego-
ries that avoid many of the register problems by not using
general registers in the first place. Two of these alternative
approaches are accumulator machines and stack machines.

In an accumulator machine there is exactly one register
for transient operands, although there may be other registers
for longer-lived operands as well. All operations take one of

US 9,747,216 B2

3

their inputs from the accumulator, and place their result in
the accumulator. Because there is only one, addressing the
accumulator is implicit and does not require any address bits
in the operation. Consequently, a computational operation
contains only a single address, for the second argument, not
three as in a general register machine. Of course, the first
operand of an expression must be placed into the accumu-
lator by an extra operation to start things off, which adds
some extra cost to the use of an accumulator. In practice
accumulator designs eliminate any entropy problems, and
accumulator machines frequently have very small instruc-
tions, with a net gain even allowing for the extra operations
to load the accumulator. Such designs also eliminate the
bypass network because the producer and the following
consumer are necessarily the same, namely the accumulator.
This makes expressions such as “A+B+C” have a compact
encoding and rapid execution.

However, an accumulator machine is optimal only if the
most recent transient is immediately needed in the expres-
sion. In an expression like “(A*B)+(C*D)” there are two
multiplies, both of which must be done before the add can
sum their results. On an accumulator machine, the second
multiply and the add can be done using the accumulator, but
the result of the first multiply must be saved somewhere or
it will be overwritten by the result of the second.

In a stack machine, transient operands are stored in a
last-in-first-out (LIFO) stack, so that temporaries not needed
immediately can simply be pushed into a stack. In such a
stack machine, the computational operations contain no
addresses at all, but operate on the top two operands in the
stack by removing or popping them from the stack and
pushing the result onto the top of the stack. As in the
accumulator machine, the encoding requires extra opera-
tions to preload the stack with any operands that are not
transients. However, operation encoding density is very
good even allowing for these costs, and no bypass network
is required.

Despite their advantages, accumulator and stack designs
are rarely used where performance is a concern because they
are inherently sequential in execution. Because there is only
one accumulator (or one top of stack) they can execute only
one operation at a time, whereas most modern processor
designs try very hard to execute more than one operation
simultaneously in parallel.

Note that it is possible to put more than one accumulator
machine or stack machine into a single computer or chip, but
that approach gains little because each must have its own
instruction decoder and other components. It is also possible
to put more than one accumulator into a single machine, but
the result is called a general register machine with the
drawbacks noted above.

SUMMARY

This summary is provided to introduce a selection of
concepts that are further described below in the detailed
description. This summary is not intended to identify key or
essential features of the claimed subject matter, nor is it
intended to be used as an aid in limiting the scope of the
claimed subject matter.

Tlustrative embodiments of the present disclosure are
directed to a computer processing system that includes a
computer processor having a first memory structure that
operates over multiple cycles to temporarily store operands
referenced by at least one instruction. A plurality of func-
tional units perform operations specified by the at least one
instruction over the multiple cycles, wherein the operations

25

30

40

45

60

4

produce and access operands stored in the first memory
structure. A second memory structure, separate from the first
memory structure, is configured as a dedicated memory
storing operands copied from the first memory structure. The
second memory structure is organized with a byte-address-
able memory space and each operand stored in the second
memory structure is accessed by a given byte address into
the byte-addressable memory space.

In one embodiment, the given byte address for each
operand is aligned on predefined boundaries within the
second memory structure. The given byte address for each
operand can be statically-assigned.

In another embodiment, the second memory structure can
be configured to store a copy of an operand from the first
memory structure before it is removed from the first memory
structure. The first memory structure can be configured to
store a copy of an operand from the second memory struc-
ture for subsequent access by at least one functional unit of
the computer processor.

In still another embodiment, the functional units can
include a spill unit that is configured to store a copy of
contents of the first memory structure as well as contents of
the second memory structure into temporary memory in
response to the processing a CALL operation, and to restore
the copy of contents of the first memory structure as well as
contents of the second memory structure as stored in the
temporary memory in response to the processing a
RETURN operation corresponding to the CALL operation.
The spill unit can also be configured to store a copy of
contents of the first memory structure as well as contents of
the second memory structure into temporary memory in
response to the processing an Interrupt, and to restore the
copy of contents of the first memory structure as well as
contents of the second memory structure as stored in the
temporary memory after handling the Interrupt.

In yet another embodiment, the second memory structure
can include physical registers arranged as a circular buffer.
A window-based logical-to-physical mapping scheme
employing a frame identifier assigned to the particular
function activation can be used to control access to a specific
address space window of the circular buffer to only that
particular function activation. This specific address space
window of the circular buffer can have a variable size, which
can be dictated by an argument of a predefined operation that
is encoded as part of a subroutine or function.

In still another embodiment, the computer processor
further includes save-restore logic which is notified of a
range of addresses within the second memory structure to be
saved or restored, and which performs the save or restore
operations in the background while the execution of opera-
tions by the functional units continues asynchronously.
When performing a save operation, the save-restore logic
can be configured to perform a delayed stall of the execution
of operations by the functional units as dictated by context
managed by the computer processor. Base and fence regis-
ters can be maintained to stored addresses of the second
memory structure for a current function frame activation. A
save-point register can be maintained that stores an address
SP that indicates that content of the second memory struc-
ture between the address stored in the Fence register and SP
has been saved and that content of the second memory
structure between SP and the address stored in the Base
register remains to be saved. A restore-point register can be
maintained that stores an address RP that indicates that
content of the second memory structure between the address
stored in the Base register and RP has been restored and that
content of the second memory structure between RP and the

US 9,747,216 B2

5

address stored in the Fence register remains to be restored.
Execution logic can be provided that is configured to iden-
tify changes to the addresses stored in the Base and Fence
registers that open a gap between SP and the address stored
in the base register in order to notify the save-restore logic
that the contents of the second memory structure between SP
and the address stored in the base register is eligible for
saving. Such execution logic can be further configured to
identify changes to the addresses stored in the Base and
Fence registers that open a gap between the address stored
in the fence register and RP in order to notify the save-
restore logic that the contents of the second memory struc-
ture between the address stored in the fence register is
eligible for restoring. The execution logic can be configured
to update the addresses stored in the Base and Fence
registers based on execution of at least one of CALL,
SCRATCHF, RETURN, and Interrupt operations function-
ally similar to CALL and RETURN operations.

In response to notification that the contents of the second
memory structure between SP and the address stored in the
base register is eligible for saving, the save-restore logic can
be configured perform a save operation of such contents in
the background while the execution of operations by the
functional units continues asynchronously or while the func-
tional units undergo a stall as dictated by the address stored
in the fence register and SP. In response to notification that
the contents of the second memory structure between the
address stored in the fence register and RP is eligible for
restoring, the save-restore logic can be configured perform
a restore operation of such contents in the background while
the execution of operations by the functional units continues
asynchronously or while the functional units undergo a stall
as dictated by the address stored in the base register and RP.
The functional units can undergo a delayed stall during the
save operation of the save-restore logic in the event that the
address stored in the fence register is set beyond SP. The
functional units can undergo a delayed stall during the
restore operation of the save-restore logic in the event that
the address stored in the base register is set to a value before
RP.

In yet another embodiment, the computer processor can
further include a number of instruction processing stages
including a memory system storing the at least one with
instruction and at least one instruction fetch unit operably
coupled to the memory system and to at least one instruction
buffer. A decode stage can be operably coupled to the at least
one instruction buffer. The decode stage can be configured to
decode the instruction stored in the at least one instruction
buffer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a schematic block diagram of a computer
processing system according to an embodiment of the pres-
ent disclosure.

FIG. 1B is a schematic diagram of exemplary pipeline of
processing stages that can be embodiment by the computer
processor of FIG. 1A.

FIG. 2 is schematic illustration of components that can be
part of the execution logic of the computer processor of FIG.
1A according to an embodiment of the present disclosure.

FIGS. 3A and 3B are schematic illustrations that show the
logical model of operation of the belt storage elements of
FIG. 2 as viewed by program code.

FIGS. 4A and 4B are schematic illustrations of an exem-
plary embodiment of a belt interconnect network, which can
optionally be part of the execution logic of FIG. 2.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIGS. 5A and 5B are schematic illustrations of a logical
slot-based organization of functional units, which can
optionally be part of the execution logic of FIG. 2.

FIG. 6 is a schematic illustration of a scratchpad memory,
which can optionally be part of the execution logic of FIG.
2.

FIG. 7 is a schematic illustration of a spiller unit, which
can optionally be part of the execution logic of FIG. 2.

FIG. 8 is a schematic illustration of exemplary operations
performed by the execution logic of FIG. 2 in processing
CALL/RETURN operations; similar operations can be per-
formed in handling interrupts.

FIGS. 9A-9E are schematic illustrations of a logical
slot-based organization of functional units with a daisy-
chain of output registers, which can optionally be part of the
execution logic of FIG. 2.

FIGS. 10A-10F are schematic illustrations of exemplary
operations (including save and restore operations of a
Spiller), which can optionally be carried out by the execu-
tion logic of FIG. 2.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

Tustrative embodiments of the disclosed subject matter
of the application are described below. In the interest of
clarity, not all features of an actual implementation are
described in this specification. It will of course be appreci-
ated that in the development of any such actual embodiment,
numerous implementation-specific decisions must be made
to achieve the developer’s specific goals, such as compli-
ance with system-related and business-related constraints,
which will vary from one implementation to another. More-
over, it will be appreciated that such a development effort
might be complex and time-consuming but would neverthe-
less be a routine undertaking for those of ordinary skill in the
art having the benefit of this disclosure.

As used herein, the term “operation” is a unit of execu-
tion, such as an individual add, load, or branch operation.

The term “instruction” is a unit of logical encoding
including zero or more operations. For the case where an
instruction includes multiple operations, the multiple opera-
tions are semantically performed together.

In accordance with the present disclosure, a sequence of
instructions is stored in the memory system 101 and pro-
cessed by a CPU (or Core) 102 as shown in the exemplary
embodiment of FIG. 1. The CPU (or Core) 102 includes a
number of instruction processing stages including at least
one instruction fetch unit (one shown as 103), at least one
instruction buffer or queue (one shown as 105), at least one
decode stage (one shown as 107) and execution logic 109
that are arranged in a pipeline manner as shown. The CPU
(or Core) 102 also includes at least one program counter
(one shown as 111), at least one L1 instruction cache (one
shown as 113), and an L1 data cache 115.

The L1 instruction cache 113 and the L1 data cache 115
are logically part of the hierarchy of the memory system
101. The L1 instruction cache 113 is a cache that stores
copies of instruction portions stored in the memory system
101 in order to reduce the latency (i.e., the average time) for
accessing the instruction portions stored in the memory
system 101. In order to reduce such latency, the L1 instruc-
tion cache 113 can take advantage of two types of memory
localities, including temporal locality (meaning that the
same instruction will often be accessed again soon) and
spatial locality (meaning that the next memory access for
instructions is often very close to the last memory access or

