a2 United States Patent

US009747216B2

10) Patent No.: US 9,747,216 B2

Godard et al. 45) Date of Patent: Aug. 29,2017
(54) COMPUTER PROCESSOR EMPLOYING (56) References Cited
BYTE-ADDRESSABLE DEDICATED
MEMORY FOR OPERAND STORAGE U.S. PATENT DOCUMENTS
(71) Applicant: Mill Computing, Inc., Palo Alto, CA 5,761,490 A ¥ 6/1998 Hunt ..o G06F7?/23/§‘1‘§
(US) 6,970,996 B1* 11/2005 Green GOGF 9/30043
712/201
(72) Inventors: Roger Rawson Godard, East Palo 7127592 B2 10/2006 Abraham ef al
Alto, CA (US); Arthur David Kahlich, 2015/0186240 Al* 7/2015 Kegel v GOGF 11/3065
Sunnyvale, CA (US); Sebastien Paul 710/18
Maurice Mirolo, San Francisco, CA
(US); David Arthur Yost, Los Altos,
CA (US) OTHER PUBLICATIONS
(73) Assignee: Mill Computing, Inc., Palo Alto, CA Spills, Fills, and Kills, An Architecture for Reducing Register-
US) Memory Traffic, Mattan Erez et al., Computer Systems Laboratory,
Stanford University, 2000.
(*) Notice: Subject to any disclaimer, the term of this))
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 360 days.
(21) Appl. No.: 14/311,988 Primary Examiner — Reginald Bragdon
) Assistant Examiner — Mehdi Namazi
(22) Filed: Jun. 23, 2014 (74) Attorney, Agent, or Firm — Gordon & Jacobson,
(65) Prior Publication Data PC.
US 2015/0370717 Al Dec. 24, 2015
(57) ABSTRACT
(51) Imt. ClL
GOG6F 12/08 (2016.01) A computer processor including a first memory structure that
GO6F 12/02 (2006.01) operates over multiple cycles to temporarily store operands
GOG6F 12/0875 (2016.01) referenced by at least one instruction. A plurality of func-
GO6F 17/30 (2006.01) tional units performs operations that produce and access
GOGF 9/50 (2006.01) operands stored in the first memory structure. A second
(52) US. CL memory structure is provided, separate from the first
CPC G06F 12/0875 (201301), G06F 9/50 memory structure. 'I'he Second memory structure is Conﬁg_
(2013.01); GO6F 12/023 (2013.01); GOGF ured as a dedicated memory for storage of operands copied
. 1730 .(201?'01); GOGF 2212/452 (2013.01) from the first memory structure. The second memory struc-
(58) Field of Classification Search ture is organized with a byte-addressable memory space and

CPC GO6F 12/0875; GO6F 12/023; GO6F 17/30;
GOG6F 9/50; GO6F 2212/452; GO6F
9/30098; GOG6F 9/3012; GO6F 9/30134;
GOG6F 9/30138; GO6F 9/342; GO6F
9/3824; GO6F 9/383; GOGF 9/3832
See application file for complete search history.

each operand stored in the second memory structure is
accessed by a given byte address into the byte-addressable
memory space.

21 Claims, 22 Drawing Sheets

: l
| -

| \.<~—~\;‘,<~-———-\‘.<——--1,<-~———\.<——-—~ 1

s 201 20 a1 i 1

¢ xo 207 /’ : 20t | X

!)y ¥ ¥ ¥ £ ¥ [!
|

§ 1

! 1 Uz U3 U4 FUnN t I

: ! 1

i 1

203

: | ' | | b !

i 1

| { Belt Storage Elements ' ! |
!

N < < T i 1

! * A N X | |

1 e I i e e |
|

! !

! 1
}

| 1

|

Belt interconnect Network 205 J

Exacution Logic 109

U.S. Patent Aug. 29, 2017 Sheet 1 of 22 US 9,747,216 B2

101
Memory System //}
CPU/Core
(102 A A
e S e]
[\ Y |
I L1 Instruction Cache L1 Data Cache I
| |
| 1 13 -"”'// 1 A {\\T *5 5 |
| 103 ‘
| r i
| l
| > instruction Fetch Unit I
| |
| i
| |
, Y 105 :
I instruction Buffer “’// !
! 111 !
I 4 z
| Y |
| 107 |
Program |
: Counter € Decode Stage . :
| i
| Y 109 |
| R . L |
| Execution Logic |
] I
| |
b o o o .

U.S. Patent Aug. 29, 2017 Sheet 2 of 22 US 9,747,216 B2

Fotoh g DIQOOC0E ol GGG e FU@OUTE e (2 2HrR
FIG. 18

US 9,747,216 B2

Sheet 3 of 22

Aug. 29, 2017

U.S. Patent

Z 'Old
Vel 601 J1BOT UORNDEXY
\\ GO7 HIOMISN JosUUIODIBIU] 1ag

|||||||| Lz\..rAI —_—— L,\..\,AAI —_—— Lf\:s, = ~ — L,\/\,
" ™ Y AN A}
_ sjuswalg abeiols)eg
|

A A
|
_ mmm\\\ ﬁ a H
|
" N N4 . N4 e Zn4 L N4
|
| 7 AT AT A P
_ LMo AR T AT 74 L L 10T
U T W e—— L e — S T em— S S

US 9,747,216 B2

Sheet 4 of 22

Aug. 29, 2017

U.S. Patent

€L "Oid

B G EE0 0 0 sjusiner alungs

o

O} LU 10 By

3 DL O (LS
i oy Burpionns ??53 o_

HOAD 1Kau
wc.

yoEs ssaInpe oo
i Y -4
st ” xM ER briX VY S0ATY U PEIDLG § X SI0AT U pE0nD0id | 2K SI0A0 L pRORpN
3 (R D4 SR T PEONEGS
S RSP SR Ut PG R L puRi »ao 7 DUBISAD L% puessdo
L pussedn S, " pugsad i # pusssd(o ~)
BT ST e s "
BEEIOTS BEERGE SBEIGTE — IS
N ¥ ¢ 7 : 0
SRBIppY FERIPDY SEBIPPY SSUPHY SERIPPY s88s0pY
wfio ey jembo aBe ieaiboy feoifony

HOU BUL 0 IO 30 (I PODDE &1 SpuRiads MBL $8 §BG
g spusteie alinaois 9uy 10 feas au 4o g spusado

¥e Ol

HE a0 SuBeR 358018 B4 J0 1Dy

By} 18 POLOSU BUB LY I0AT i peonplud spusiedn

3 PRI
Li pusiad
itetvie

Lo
HOAD 1 DOOND

I

L pussad

E&mmmw

L REBAC W DRONPNy

ﬁw n:Ea\wO

%mﬁw

&
i t %'
A0 W wxﬁ.# ey BRALY UL POONDOLY
L pusiado e oo oo L# pusdn
WsE Hitc e
N ¥
SERBIIDY SeRIPLY
poifion feuBoT

La)

SSBIDDY
iembory

SHESINEY
oo

SERUDDY
semmbior

G
SHBINDY
arnBion

[4
FOAD

1Y
BiuAn

..

US 9,747,216 B2

Sheet 5 of 22

Aug. 29, 2017

U.S. Patent

vv "old

SHUM UOIDUNY

BPUINSUeD 03 puriado 4o} syied eleg

_\\ LOv

Soxnu | -Adusle]

S10}S e Wwioyy suopesdo
{(3pA2 aibuis) Aouaie) 158MO|
wio paonpoud spueiado 10§ suyed eyep

eor 4//

SSANW U-A3Ud3e)

R

S104S e wiosy suonessdo Aousie; saybiy
wioy paonpoid spueisdo jog syjed eyep

///v GO7 HIOMISN 13aUU0DISlU 1og

US 9,747,216 B2

Sheet 6 of 22

Aug. 29, 2017

U.S. Patent

g3y "Old

Jegssalo |

-Aousie|

SHUIS

520JN0s

U.S. Patent Aug. 29, 2017 Sheet 7 of 22 US 9,747,216 B2

501A | 501B Y Y
//} ///’ adder / e Latency-1 result
Eat~? tle 1" lyl
¥ \
shifter / A
» 503A 5038
lat-1 / //}
.~ Latency-3 result
P
lat-3
k 4 L 4
To lat-1 Tolat-3
output output
FU Slot P P

register register

FIG. 5A

U.S. Patent Aug. 29, 2017 Sheet 8§ of 22

501A 5018

\ Mult'er / FU
Slot
AN 7
\ shifter /

N\ /
adder

5034, 5038

\

lat-1

fat-2

Y

fat-3

Y

o fat-4

FIG. 5B

US 9,747,216 B2

U.S. Patent Aug. 29, 2017 Sheet 9 of 22 US 9,747,216 B2

o0 B
S
LA T SO
-
~
~
\"\
o0 \\.
\\
* w
W IJ o g_}
’ L
rs
o0 ’

601

8
Scratchpad ///

belt \\\\

logical

U.S. Patent Aug. 29, 2017 Sheet 10 of 22 US 9,747,216 B2

701
Spiller Unit _,..,——/‘/

A A A

203 ~

Belt Storage Elements

601 \\\

Y

Y

Scratchpad

Y

Memory Hierarchy

FIG.7

US 9,747,216 B2

Sheet 11 of 22

Aug. 29, 2017

U.S. Patent

8ol {1j2qQ wmummOm Sl syl lo

UG BU1 01 pBppE pue jaq jeniBoy s3a(eD
€ 9 g g ¢ € g / 2y} woy paidod ale uonerad) uinsy

ul syusuinbue se pasusiaRl spuessdo)
7 184 [e21Boj s,48)[eD

R (uopeiado e o3 Joud 518315 0}
8 3 9 8 8 € € 8 p3103584 Ajjeiul) yag eiboy sepe)

;;;;;;;;;;;;;;;;;;;;;;;;; o ¥ U3y - uopeiado uiniay

Arepunog A o

Cisl Ry

¥ 0 5 4 L 6 ¥ L yaq jeanboj seayen

(199 (e2150} 522(12)
mm_hmﬁmgg\\& 3U3 JO 1UCH} BY3 O3 PBpPE pue }aq [ed1bo)
3[PAD XX px X 18 L8 19 L E | gianen sy woiy paidod sie uonessdo e
- 4 y 3y ut siuswinbie se paduaiasl spueisdo)
pon : yaq [exibo seeyel
" M\ 5
A ¢ (Aydws se pazieiuy
AR A R O I B R y8q e2160] 59387
o) m ! m
;;;;;;;;;;;;;;;; e e et uny (e - uonessdo jjen

320 {e21bo} s, 8)jed

[s59ippe 0 ssappe
yag [e3ibo }og jed1bo

US 9,747,216 B2

Sheet 12 of 22

Aug. 29, 2017

U.S. Patent

P-ie7

£-1e7

A

A

-ieh

A

insay L-PPY
L-1e7

A

isppe

AN

SBYIYS /
AN

e
/

42,10

N\

!

H

veé 'Old

BpIO
UOIONASUY

92uUsnbag UOIIINIISU]

US 9,747,216 B2

Sheet 13 of 22

Aug. 29, 2017

U.S. Patent

18] <

£-1e -

HOSSY PRV |

-1 -
inssy
L-PpPY

HNSIY E-PPY |

L-3E1 -

lappe
/ AN
\ 1OHIYS /
Z AN
1015 \ BN /

P

g6 "Oid

PPy
L-ppPY \ﬂ
BRIO
UORIDNIISU]

22U3NHSS UCIIONIISUY

US 9,747,216 B2

Sheet 14 of 22

Aug. 29, 2017

U.S. Patent

-1e7 €
ynsey L-ppv |
£-3187 o .
Jnsay 36 "9ld
L-pPRY
UNSSY Z-PPY |
-127 I
ynsay
-ppy
Hns=Y PPy [
L-3E7 D
£-PRY
-pPpY
iappe
V4 A L-PpY
\ 19YIYs / 1RO
UCII2NAISUY
/ \,
1015 \ BUNW / a3usnbas UoIINsY|

P

US 9,747,216 B2

Sheet 15 of 22

Aug. 29, 2017

U.S. Patent

3jnsay
L-ppY

1nseY
-ppv

Hnsay
PPV

Hnsey L-ppy
-31€7

A

HNSSY -Ppy
€37

A

HNSOY £-PPRY
Z-1ef

A

HNs=Y y-PPyY
L-3€7

A

1015

{6 "oid
¥-PRY
PRy
PPy
Bppe
/ A\ L-ppY
\ I2HIYS / BpIG
UORINAISUY
/ N\
BN auanbag uoIPNISYY

US 9,747,216 B2

Sheet 16 of 22

Aug. 29, 2017

U.S. Patent

3jnsay
z-ppY

}nsay
E-PPY

ynsay
y-ppv

lnsay .
L-PPY abri01s Jo4NG IO 10IS IBYI0

Hnsay Z-ppv
-1€7

404 423s1Bou ndano uesea oy

HNSSY £-PPY
£-1e7

L.
-

A

UNsaY b-pPpy
-1

A

HNsaY S-PPY
L-1€7

A

3015

=46 'Oid
S-PpRY
PPy
PPy
-ppy
isppe
A\ L-ppY
DYy BpIO
UORNASUY
N\
193N FoUBNDSS UOIINIISU]

US 9,747,216 B2

Sheet 17 of 22

Aug. 29, 2017

U.S. Patent

VOT 'Ol

[|B1S 1NOY1IM 01 pauiniaJ aqg ued ‘patolsal

\

[1BIS INOYUM UDIHIMIDAO 3G Ued ‘pPanes

A

/

pedyojelds [ea130|

aAlloe

CRIE! aseq
H ﬁ
dy ds

US 9,747,216 B2

Sheet 18 of 22

Aug. 29, 2017

U.S. Patent

40T 'Sid
[JE3S INOYIM 01 PauINIal 3g Ued ‘palolsal

\
\ I : /

[JE1S INOY1IM USNIIMIDAO D UBD ‘PIABS

A A

\ | anes spasu “ J

/

pedydiesds jes1so| 23Uy dS

aseq

US 9,747,216 B2

Sheet 19 of 22

Aug. 29, 2017

U.S. Patent

J0T 'SH

{|_1S INOYIM 0] pauInial ag ued ‘palolsal

A

[|E1S INOYIIM UB1HIMISAO Bq UBD ‘PIAEBS

/

pedyoiesds ed150|

\ duines 19jids [
9AI0E ‘anes spasu

\ A
\ \f /

H

ERIET] dy dS

aseq

US 9,747,216 B2

Sheet 20 of 22

Aug. 29, 2017

U.S. Patent

aot oid
[|B3S INOYIIM 0} PauLInial ag ued ‘palolsal

\ \

[1E3S INOYHM USIHIMIBAO 2q UBD ‘PaAeS

) A

anioe

/o]

pedydiesds jedi30| muﬁﬁ 3seq

dy dS

US 9,747,216 B2

Sheet 21 of 22

Aug. 29, 2017

U.S. Patent

301 'Oi

[|E1S INOYLIM O3 pauinial 8¢ ued ‘palolsal

A

/ \

jel1s INoYIM Ua11UMIGAO 2§ Uued _u®>m.m

| A

/

pedyoleuos |ed130|

J [

gupiom Jajjids

d‘_oﬁmg spasu SAIIE

A
\ \f /

dd 90Uy aseq

US 9,747,216 B2

Sheet 22 of 22

Aug. 29, 2017

U.S. Patent

40T "Oid

[|EIS INOYIIM O3 PaUINIaL 9(UBD ‘Pal0lsal

) A

/ \

[|B1S INOYHM USIIJIMIBAC 3 UBD ‘PIAes

] A

/

pedysie.os |ed130|

aAloE

dd aseq
1 |
0UDdY dS

US 9,747,216 B2

1
COMPUTER PROCESSOR EMPLOYING
BYTE-ADDRESSABLE DEDICATED
MEMORY FOR OPERAND STORAGE

BACKGROUND

1. Field

The present application relates generally to computer
processors and, more specifically, to mechanisms for storing
and referencing transient operands that are produced and
consumed by the computer processors.

2. State of the Art

Computer processors execute operations on data. An
individual data value (an operand) is produced by some
producer operation, recorded, and then used later by one or
more other consumer operation. The time between produc-
tion and consumption by the last consumer is the lifetime of
the operand. Operands vary widely in lifetime, but lifetimes
can usually be loosely categorized into persistent (or global)
lifetimes that last for an appreciable fraction of total pro-
gram execution; local lifetimes that last for the duration of
a function or several statements in the program; and tran-
sient lifetimes that last for only portions of a single expres-
sion in the program. These categories are not sharp, and
programs exhibit a continuum of lifetimes, but the rough
grouping is strong enough that computer hardware usually
contains different storage means for operands of each cat-
egory. For example, persistent operands may use a software-
provided heap in memory, while local operands may use a
hardware-assisted stack and transient operands use a wholly
hardware register bank.

Transient operands are ubiquitous and very common. For
example, if the source program contains the expression
“A+B+C” then the computer will execute a first add opera-
tion of A and B, and then a second add operation of the result
of the first add operation to C. The A+B result is typically
transient and will be discarded as soon as it is consumed by
the second add operation, although it may have a longer
lifetime if the same A+B calculation appears elsewhere and
the intermediate result can be reused.

Many prior art computer processors employ a set of
general registers, which are storage devices that can hold a
single operand each. Machine operations like addition take
their arguments from and deliver their result to registers.
Thus, a register is the holding place for transient operands.
When the lifetime of an operand ends, the register holding
it can simply be overwritten by some other newly computed
operand. Register usage by a program is very high because
there are so many transients. Consequently, computer pro-
cessor designers go to great lengths to ensure that access to
registers is very fast and that there are enough registers to
hold any reasonable transient population. Operands that do
not fit in the available registers must be kept elsewhere,
typically in memory, and access to such spilled operands
takes tens to hundreds of times longer than access to a
register. Because of the speed advantage of registers, regis-
ters not needed for transients are commonly used for fre-
quently-referenced operands with more-than-transient life-
times, even very long lived global operands. Each extra
operand that can reside in the registers improves the speed
of the program by avoiding lengthy memory access. This
design force tends to cause designers to increase the number
of registers in a design, so that more operands can be register
resident. Balancing this force are two other effects of
increased register count: instruction entropy and hardware
complexity.

25

30

40

45

55

2

Entropy refers to the information-theoretic density of the
machine representation (the encoding) of instructions to be
executed. Each instruction must encode an indicator of the
operation to be performed (the opcode) and the places that
data arguments for the instruction must come from and
results go to (the addresses for the source and result oper-
ands). Typical computational operations (such as an add)
require two source operand addresses and one result operand
address, in addition to the opcode. The operand addresses
are register numbers when the arguments and results are in
registers. When a design increases the number of address-
able registers, it necessarily also increases the size of the
address required to indicate which register to use. Thus, if
there are eight registers (as in some early machines), an
operand address occupies three bits and a register-based add
operation uses nine bits for addressing, whereas if there are
128 registers (as in some recent machines), an operand
address occupies seven bits and an add requires 21 bits of
address.

Unfortunately, other considerations often dictate that
instructions themselves must occupy a whole power-of-two
number of bits, such as 16 or 32. Increasing the number of
registers (and hence the number of address bits in an
instruction) then necessarily reduces the number of bits
available for the opcode and other purposes. In practice, it is
impractical to have more than 32 registers while retaining a
fixed 32 bit instruction length. Moreover, extra registers
increase the total size of a program even if the design uses
a wider or variable-length instruction to admit more than 32
registers. The increased program size and decode complex-
ity may cause problems with the memory bandwidth and
instruction cache of the machine.

Besides the entropy effect, increasing the number of
registers also increases the complexity, chip area, and power
requirements of the machine. Each potential functional unit
consumer of an operand and each functional unit producer of
a result operand must be able to communicate with each
register, and thus involve connections that directly and
super-linearly increase the required chip area and power.
Moreover, modern processors typically include a bypass
network whose complexity increases non-linearly. The
bypass network is used to deal with pairs of operations that
have a producer-consumer relationship, i.e. the transient
result of the first is immediately used by the second. The
bypass network avoids the latency in moving the result
operand from the first operation into a register and then
fetching it again as a consumer operand for the second
operation. Instead, special hardware circuitry detects the
producer-consumer relation and the bypass network routes
the transient operand directly from the producing functional
unit (such as an adder) to the consumer without waiting for
the operand to reach the register. However, the bypass
network is often the critical timing path of the whole
machine, so any slowdown of the bypass network slows
down the execution of every operation. Consequently, the
design of a register-based machine reflects a balance
between the storage performance advantages of extra reg-
isters and the encoding and execution performance costs of
those registers.

However, a designer is not necessarily restricted to using
registers for transients. There are other architectural catego-
ries that avoid many of the register problems by not using
general registers in the first place. Two of these alternative
approaches are accumulator machines and stack machines.

In an accumulator machine there is exactly one register
for transient operands, although there may be other registers
for longer-lived operands as well. All operations take one of

US 9,747,216 B2

3

their inputs from the accumulator, and place their result in
the accumulator. Because there is only one, addressing the
accumulator is implicit and does not require any address bits
in the operation. Consequently, a computational operation
contains only a single address, for the second argument, not
three as in a general register machine. Of course, the first
operand of an expression must be placed into the accumu-
lator by an extra operation to start things off, which adds
some extra cost to the use of an accumulator. In practice
accumulator designs eliminate any entropy problems, and
accumulator machines frequently have very small instruc-
tions, with a net gain even allowing for the extra operations
to load the accumulator. Such designs also eliminate the
bypass network because the producer and the following
consumer are necessarily the same, namely the accumulator.
This makes expressions such as “A+B+C” have a compact
encoding and rapid execution.

However, an accumulator machine is optimal only if the
most recent transient is immediately needed in the expres-
sion. In an expression like “(A*B)+(C*D)” there are two
multiplies, both of which must be done before the add can
sum their results. On an accumulator machine, the second
multiply and the add can be done using the accumulator, but
the result of the first multiply must be saved somewhere or
it will be overwritten by the result of the second.

In a stack machine, transient operands are stored in a
last-in-first-out (LIFO) stack, so that temporaries not needed
immediately can simply be pushed into a stack. In such a
stack machine, the computational operations contain no
addresses at all, but operate on the top two operands in the
stack by removing or popping them from the stack and
pushing the result onto the top of the stack. As in the
accumulator machine, the encoding requires extra opera-
tions to preload the stack with any operands that are not
transients. However, operation encoding density is very
good even allowing for these costs, and no bypass network
is required.

Despite their advantages, accumulator and stack designs
are rarely used where performance is a concern because they
are inherently sequential in execution. Because there is only
one accumulator (or one top of stack) they can execute only
one operation at a time, whereas most modern processor
designs try very hard to execute more than one operation
simultaneously in parallel.

Note that it is possible to put more than one accumulator
machine or stack machine into a single computer or chip, but
that approach gains little because each must have its own
instruction decoder and other components. It is also possible
to put more than one accumulator into a single machine, but
the result is called a general register machine with the
drawbacks noted above.

SUMMARY

This summary is provided to introduce a selection of
concepts that are further described below in the detailed
description. This summary is not intended to identify key or
essential features of the claimed subject matter, nor is it
intended to be used as an aid in limiting the scope of the
claimed subject matter.

Tlustrative embodiments of the present disclosure are
directed to a computer processing system that includes a
computer processor having a first memory structure that
operates over multiple cycles to temporarily store operands
referenced by at least one instruction. A plurality of func-
tional units perform operations specified by the at least one
instruction over the multiple cycles, wherein the operations

25

30

40

45

60

4

produce and access operands stored in the first memory
structure. A second memory structure, separate from the first
memory structure, is configured as a dedicated memory
storing operands copied from the first memory structure. The
second memory structure is organized with a byte-address-
able memory space and each operand stored in the second
memory structure is accessed by a given byte address into
the byte-addressable memory space.

In one embodiment, the given byte address for each
operand is aligned on predefined boundaries within the
second memory structure. The given byte address for each
operand can be statically-assigned.

In another embodiment, the second memory structure can
be configured to store a copy of an operand from the first
memory structure before it is removed from the first memory
structure. The first memory structure can be configured to
store a copy of an operand from the second memory struc-
ture for subsequent access by at least one functional unit of
the computer processor.

In still another embodiment, the functional units can
include a spill unit that is configured to store a copy of
contents of the first memory structure as well as contents of
the second memory structure into temporary memory in
response to the processing a CALL operation, and to restore
the copy of contents of the first memory structure as well as
contents of the second memory structure as stored in the
temporary memory in response to the processing a
RETURN operation corresponding to the CALL operation.
The spill unit can also be configured to store a copy of
contents of the first memory structure as well as contents of
the second memory structure into temporary memory in
response to the processing an Interrupt, and to restore the
copy of contents of the first memory structure as well as
contents of the second memory structure as stored in the
temporary memory after handling the Interrupt.

In yet another embodiment, the second memory structure
can include physical registers arranged as a circular buffer.
A window-based logical-to-physical mapping scheme
employing a frame identifier assigned to the particular
function activation can be used to control access to a specific
address space window of the circular buffer to only that
particular function activation. This specific address space
window of the circular buffer can have a variable size, which
can be dictated by an argument of a predefined operation that
is encoded as part of a subroutine or function.

In still another embodiment, the computer processor
further includes save-restore logic which is notified of a
range of addresses within the second memory structure to be
saved or restored, and which performs the save or restore
operations in the background while the execution of opera-
tions by the functional units continues asynchronously.
When performing a save operation, the save-restore logic
can be configured to perform a delayed stall of the execution
of operations by the functional units as dictated by context
managed by the computer processor. Base and fence regis-
ters can be maintained to stored addresses of the second
memory structure for a current function frame activation. A
save-point register can be maintained that stores an address
SP that indicates that content of the second memory struc-
ture between the address stored in the Fence register and SP
has been saved and that content of the second memory
structure between SP and the address stored in the Base
register remains to be saved. A restore-point register can be
maintained that stores an address RP that indicates that
content of the second memory structure between the address
stored in the Base register and RP has been restored and that
content of the second memory structure between RP and the

US 9,747,216 B2

5

address stored in the Fence register remains to be restored.
Execution logic can be provided that is configured to iden-
tify changes to the addresses stored in the Base and Fence
registers that open a gap between SP and the address stored
in the base register in order to notify the save-restore logic
that the contents of the second memory structure between SP
and the address stored in the base register is eligible for
saving. Such execution logic can be further configured to
identify changes to the addresses stored in the Base and
Fence registers that open a gap between the address stored
in the fence register and RP in order to notify the save-
restore logic that the contents of the second memory struc-
ture between the address stored in the fence register is
eligible for restoring. The execution logic can be configured
to update the addresses stored in the Base and Fence
registers based on execution of at least one of CALL,
SCRATCHF, RETURN, and Interrupt operations function-
ally similar to CALL and RETURN operations.

In response to notification that the contents of the second
memory structure between SP and the address stored in the
base register is eligible for saving, the save-restore logic can
be configured perform a save operation of such contents in
the background while the execution of operations by the
functional units continues asynchronously or while the func-
tional units undergo a stall as dictated by the address stored
in the fence register and SP. In response to notification that
the contents of the second memory structure between the
address stored in the fence register and RP is eligible for
restoring, the save-restore logic can be configured perform
a restore operation of such contents in the background while
the execution of operations by the functional units continues
asynchronously or while the functional units undergo a stall
as dictated by the address stored in the base register and RP.
The functional units can undergo a delayed stall during the
save operation of the save-restore logic in the event that the
address stored in the fence register is set beyond SP. The
functional units can undergo a delayed stall during the
restore operation of the save-restore logic in the event that
the address stored in the base register is set to a value before
RP.

In yet another embodiment, the computer processor can
further include a number of instruction processing stages
including a memory system storing the at least one with
instruction and at least one instruction fetch unit operably
coupled to the memory system and to at least one instruction
buffer. A decode stage can be operably coupled to the at least
one instruction buffer. The decode stage can be configured to
decode the instruction stored in the at least one instruction
buffer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a schematic block diagram of a computer
processing system according to an embodiment of the pres-
ent disclosure.

FIG. 1B is a schematic diagram of exemplary pipeline of
processing stages that can be embodiment by the computer
processor of FIG. 1A.

FIG. 2 is schematic illustration of components that can be
part of the execution logic of the computer processor of FIG.
1A according to an embodiment of the present disclosure.

FIGS. 3A and 3B are schematic illustrations that show the
logical model of operation of the belt storage elements of
FIG. 2 as viewed by program code.

FIGS. 4A and 4B are schematic illustrations of an exem-
plary embodiment of a belt interconnect network, which can
optionally be part of the execution logic of FIG. 2.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIGS. 5A and 5B are schematic illustrations of a logical
slot-based organization of functional units, which can
optionally be part of the execution logic of FIG. 2.

FIG. 6 is a schematic illustration of a scratchpad memory,
which can optionally be part of the execution logic of FIG.
2.

FIG. 7 is a schematic illustration of a spiller unit, which
can optionally be part of the execution logic of FIG. 2.

FIG. 8 is a schematic illustration of exemplary operations
performed by the execution logic of FIG. 2 in processing
CALL/RETURN operations; similar operations can be per-
formed in handling interrupts.

FIGS. 9A-9E are schematic illustrations of a logical
slot-based organization of functional units with a daisy-
chain of output registers, which can optionally be part of the
execution logic of FIG. 2.

FIGS. 10A-10F are schematic illustrations of exemplary
operations (including save and restore operations of a
Spiller), which can optionally be carried out by the execu-
tion logic of FIG. 2.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

Tustrative embodiments of the disclosed subject matter
of the application are described below. In the interest of
clarity, not all features of an actual implementation are
described in this specification. It will of course be appreci-
ated that in the development of any such actual embodiment,
numerous implementation-specific decisions must be made
to achieve the developer’s specific goals, such as compli-
ance with system-related and business-related constraints,
which will vary from one implementation to another. More-
over, it will be appreciated that such a development effort
might be complex and time-consuming but would neverthe-
less be a routine undertaking for those of ordinary skill in the
art having the benefit of this disclosure.

As used herein, the term “operation” is a unit of execu-
tion, such as an individual add, load, or branch operation.

The term “instruction” is a unit of logical encoding
including zero or more operations. For the case where an
instruction includes multiple operations, the multiple opera-
tions are semantically performed together.

In accordance with the present disclosure, a sequence of
instructions is stored in the memory system 101 and pro-
cessed by a CPU (or Core) 102 as shown in the exemplary
embodiment of FIG. 1. The CPU (or Core) 102 includes a
number of instruction processing stages including at least
one instruction fetch unit (one shown as 103), at least one
instruction buffer or queue (one shown as 105), at least one
decode stage (one shown as 107) and execution logic 109
that are arranged in a pipeline manner as shown. The CPU
(or Core) 102 also includes at least one program counter
(one shown as 111), at least one L1 instruction cache (one
shown as 113), and an L1 data cache 115.

The L1 instruction cache 113 and the L1 data cache 115
are logically part of the hierarchy of the memory system
101. The L1 instruction cache 113 is a cache that stores
copies of instruction portions stored in the memory system
101 in order to reduce the latency (i.e., the average time) for
accessing the instruction portions stored in the memory
system 101. In order to reduce such latency, the L1 instruc-
tion cache 113 can take advantage of two types of memory
localities, including temporal locality (meaning that the
same instruction will often be accessed again soon) and
spatial locality (meaning that the next memory access for
instructions is often very close to the last memory access or

US 9,747,216 B2

7

recent memory accesses for instructions). The L1 instruction
cache 113 can be organized as a set-associative cache
structure, a fully associative cache structure, or a direct
mapped cache structure as is well known in the art. Simi-
larly, the L1 data cache 115 is a cache that stores copies of
operands stored in the memory system 101 in order to reduce
the latency (i.e., the average time) for accessing the operands
stored in the memory system 101. In order to reduce such
latency, the .1 data cache 115 can take advantage of two
types of memory localities, including temporal locality
(meaning that the same operand will often be accessed again
soon) and spatial locality (meaning that the next memory
access for operands is often very close to the last memory
access or recent memory accesses for operands). The L1
data cache 115 can be organized as a set-associative cache
structure, a fully associative cache structure, or a direct
mapped cache structure as is well known in the art. The
hierarchy of the memory system 201 can also include
additional levels of cache memory, such as a level 2 and
level 3 caches, as well as system memory. One or more of
these additional levels of the cache memory can be inte-
grated with the CPU 202 as is well known. The details of the
organization of the memory hierarchy are not particularly
relevant to the present disclosure and thus are omitted from
the figures of the present disclosure for sake of simplicity.

The program counter 111 stores the memory address for
a particular instruction and thus indicates where the instruc-
tion processing stages are in processing the sequence of
instructions. The memory address stored in the program
counter 111 can be used to control the fetching of the
instructions by the instruction fetch unit 103. Specifically,
the program counter 111 can store the memory address for
the instruction to fetch. This memory address can be derived
from a predicted (or resolved) target address of a control-
flow operation (branch or CALL operation), the saved
address in the case of a RETURN operation, or the sum of
memory address of the previous instruction and the length of
previous instruction. The memory address stored in the
program counter 111 can be logically partitioned into a
number of high-order bits representing a cache line address
($ Cache Line) and a number of low-order bits representing
a byte offset within the cache line for the instruction.

The instruction fetch unit 103, when activated, sends a
request to the L1 instruction cache 113 to fetch a cache line
from the L1 instruction cache 113 at a specified cache line
address ($ Cache Line). This cache line address can be
derived from the high-order bits of the program counter 111.
The L1 instruction cache 113 services this request (possibly
accessing higher levels of the memory system 101 if missed
in the L1 instruction cache 113), and supplies the requested
cache line to the instruction fetch unit 103. The instruction
fetch unit 103 passes the cache line returned from the .1
instruction cache 113 to the instruction buffer or queue 105
for storage therein.

The decode stage 107 is configured to decode one or more
instructions stored in the instruction buffer or queue 105.
Such decoding generally involves parsing and decoding the
bits of the instruction to determine the type of operation(s)
encoded by the instruction and generate control signals
required for execution of the operation(s) encoded by the
instruction by the execution logic 109.

The execution logic 109 utilizes the results of the decode
stage 107 to execute the operation(s) encoded by the instruc-
tions. The execution logic 109 can send a load request to the
L1 data cache 115 to fetch data from the [.1 data cache 115
at a specified memory address. The [.1 data cache 115
services this load request (possibly accessing higher levels

10

15

20

25

30

35

40

45

50

55

60

65

8

of the memory system 101 if missed in the L1 data cache
115), and supplies the requested data to the execution logic
109. The execution logic 109 can also send a store request
to the L1 data cache 115 to store data into the [.1 data cache
115 at a specified address. The 1.1 data cache 115 services
this store request by storing such data at the specified
address (which possibly involves overwriting data stored by
the data cache).

The instruction processing stages of the CPU (or Core)
102 can achieve high performance by processing each
instruction and its associated operation(s) as a sequence of
stages each being executable in parallel with the other
stages. Such a technique is called “pipelining.” An instruc-
tion and its associated operation(s) can be processed in four
stages, namely, fetch, decode, issue, execute and retire as
shown in FIG. 1B.

In the fetch stage, the instruction fetch unit 103 sends a
request to the L1 instruction cache 113 to fetch a cache line
from the L1 instruction cache 113 at a specified cache line
address ($ Cache Line). The instruction fetch unit 103 passes
the cache line returned from the L1 instruction cache 113 to
the instruction buffer or queue 105 for storage therein.

The decode stage 107 decodes one or more instructions
stored in the instruction buffer 107. Such decoding generally
involves parsing and decoding the bits of the instruction to
determine the type of operation(s) encoded by the instruc-
tion and generating control signals required for execution of
the operation(s) encoded by the instruction by the execution
logic 109. For the case where the instructions are wide
instructions with a number of slots, the operations of the
decode stage 107 can involve parsing slot-sized units
according to the logical arrangement of slots within the
instruction and decoding the operations of the units to
generate control signals for execution of the operations of
the slots of the instruction.

In the issue stage, one or more operations as decoded by
the decode stage are issued to the execution logic 109 and
begin execution. For the case where the instructions are wide
instructions with a number of slots, multiple operations
encoded by the wide instruction can be issued in parallel and
all can begin execution together in the issue stage. Not all
operations encoded by the wide instruction are required to
be issued together in the issue stage.

In the execute stage, issued operations are executed by the
functional units of the execution logic 109 of the CPU/Core
102.

In the retire stage, the results of one or more operations
produced by the execution logic 109 are stored by the
CPU/Core 102 as transient result operands for use by one or
more other consumer operations in subsequent issue cycles.

During the execution of an operation by the execution
logic 109 in the execution stage, the functional units can
access and/or consume transient operands that have been
stored by the retire stage of the CPU/Core 102. Note that
some operations take longer to finish execution than others.
The duration of execution, in cycles, is the latency of an
instruction. Thus, the operations of the retire stage can be
latency cycles after the issuance. Issued operations that have
not yet completed and retired are “in-flight.” Occasionally,
the CPU/Core 102 can stall for a few cycles. Nothing issues
or retires during a stall and in-flight operations remain
in-flight.

The execution logic 109 includes one or more functional
units (FUs) which perform primitive steps such as adding
two numbers, moving data from the CPU proper to and from
locations outside the CPU such as the memory hierarchy,
and holding operands for later use, all as are well known in

US 9,747,216 B2

9

the art. Also within the execution logic 109 is a connection
fabric or routing network functionality connected to the FUs
so that data produced by a producer (source) FU can be
passed to a consumer (sink) FU for further storage or
operations.

The FUs and routing network of the execution logic 109
must be controlled by the executing program to accomplish
the program aims. Rather than exert this control directly at
a per-transistor or per circuit level, which would require
much too voluminous control information in the program to
be practical, the control is abstracted into a program model,
an idealized logical representation of the CPU that the
control provided by the program manipulates. As is well
known, there are several possible such program models,
including general-register machines, accumulator machines,
and stack machines previously mentioned.

Because the program model is a logical representation of
the CPU, it is not required that the CPU hardware actually
be implemented in a form that closely matches the logical
program model. So long as the hardware is able to present
to the program the illusion that the CPU acts like the logical
program model, it may internally be implemented in any
way desired. This degree of freedom in hardware design is
heavily exploited in the well-known art, and it is very
common for the actual working of a hardware CPU to have
little resemblance to the program model it presents.

FIG. 2 is a schematic diagram illustrating the architecture
of an illustrative embodiment of the execution logic 109 of
the CPU/Core 102 of FIG. 1 according to the present
disclosure, including a number of functional units 201. The
execution logic 109 also includes a set of storage elements
203 (labeled “Belt Storage Flements™) that are operably
coupled to the functional units 201 of the execution logic
109 and configured to store transient operands that are
produced and referenced by the functional units of the
execution logic 109. A routing network 205 (labeled “Belt
Interconnect Network) provides a physical data path from
each respective belt storage element 203 to the functional
units that can possibly consume the operand stored in the
respective belt storage unit. The routing network 205 can
also provide the functionality of a bypass routing circuit
(directly from a producer functional unit to a consumer
function unit).

The instructions processed by the processing stages of the
CPU/Core 102 view the resources of the belt storage ele-
ments 203 according to a logical program model where the
storage (injection) of the result operand(s) produced by the
functional units of the execution logic 109 acts as a fixed-
length queue or conveyor belt. This program model utilizes
logical belt temporal addresses to explicitly refer to (or
address) source operands that are accessed by a respective
functional unit. The logical belt temporal addresses corre-
spond to a pre-defined ordering scheme the reflects the
temporal order in machine cycles that the result operands are
produced by the functional units of the execution logic 109
as well as ordering rules with respect to operands that are
produced in the same machine cycle. The instructions lack
any explicit reference to result operands produced by a
respective functional unit. Instead, it is understood that the
result operand produced by a given functional unit will be
added at the logical front of the belt. A single operation (or
multiple operations) can also produce multiple result oper-
ands in a machine cycle. The ordering rules also address this
situation as if the multiple result operands were single result
operands from an ordered sequence of operations. Thus, in
logical space, operands are queued or inserted to the front of
the belt in accordance with the order that they are produced

30

35

40

45

10

(and in accordance with ordering rules with respect to
operands that are produced at the same machine cycle), and
operands fall off the rear of the belt as new operands are
added to the front of the belt. The logical belt temporal
address of the operands shift (increment) each cycle bound-
ary according to the number of operands to be injected into
the belt in the next cycle. Furthermore, operations reference
the operands stored by the belt by their logical belt temporal
address. Thus, an ADD operation might specify that it is to
add an operand at a logical belt temporal address of 3 (i.e.,
the fourth most recently produced operand) to the operand at
the logical belt temporal address of 7 (i.e., the eighth most
recently produced operand). This is a form of temporal
addressing where the logical belt temporal address is dic-
tated by the ordinal position in the time sequence in which
operands are produced.

The temporal addressing scheme of the present disclosure
also relies on a fixed number (set) of logical belt temporal
addresses for storing operands. While from a logical view,
the belt acts like a simple fixed-length bucket-brigade shift
register for operands, and could be so implemented, any
physical implementation will work so long as it permits new
results operands to be stored and supplies temporally
addressed operand arguments to subsequent operations.

In the logical program model of the belt, all operands
produced by the functional units of the execution logic 109
in a given cycle are added to the front of the belt on the cycle
boundary for read access in the next cycle or in subsequent
cycles (until falling off the fixed length belt). Thus, when
multiple operands are produced by the functional units of the
execution logic 109 in a given cycle C,, the multiple
operands are added to the front of the belt on the cycle
boundary for access in the next cycle C,, . A single opera-
tion can produce the multiple operands in a given cycle.
Multiple operations can also produce the multiple operands
in a given cycle. The belt is also arranged so that multiple
operands can be read from the belt in any given cycle, so that
the multiple operands can be used as source operands by the
functional units 109. Each source operand can be accessed
in the next cycle after it was produced until it falls off the
belt. A single operation can operate on multiple operands
read from the belt in a given cycle. Multiple operations can
operate on multiple operands read from the belt in a given
cycle. Note that operands fall off the fixed length belt as
operands are added to the front of the belt on cycle bound-
aries.

Furthermore, there is a physical data path from each
respective belt storage element (a source) 203 to the func-
tional units (a sink) that can possibly access the operand
stored in the respective belt storage element 203. This is a
general routing network, labeled as Belt Interconnect Net-
work 205, which is a structure which crops up throughout
CPU and computer design. There are a variety of possible
implementations of the Belt Interconnect Network 205 that
optimize for various qualities such as path length, total cost,
average delay and so on. Most of these designs are partially
blocking, i.e. the use of one source-to-sink path may make
a different source-to-sink path unavailable. Careful sched-
uling of operations can usually avoid such blockage. For
ideal flexibility and minimal delay, the Belt Interconnect
Network 205 can be a non-blocking design where the belt
storage elements 203 (sources) can be connected to the
functional units (sinks) in any one-to-one combination.

In order to support the logical program model of the belt
and its temporal addressing scheme as described above, the
decode stage 107 of the CPU/Core 102 can be configured to
extract the logical belt temporal address for each source

US 9,747,216 B2

11

operand specified by the decoding of the instruction. Mul-
tiple logical belt temporal addresses for multiple source
operands can be specified by the decoding of an instruction.
Furthermore, the decode stage 107 operates to generate
control signals used to access operands stored in the belt
storage elements 203 for operations performed by the func-
tional units of the execution logic 109 in the issue stage.
Specifically, the decode stage 107 can be configured to map
logical belt temporal addresses to physical addresses of the
belt storage elements 203 in accordance with the logical
program model of the belt as described above. In this logical
model, the storage (injection) of the result operand(s) pro-
duced by the functional units of the execution logic 109 acts
logically as a fixed-length queue or conveyor belt. Specifi-
cally, a new operand result is injected into the front of the
fixed-length queue and the oldest operand is pushed out the
other end of the fixed length queue. Thus, in the logical
model, the fixed-length queue resembles a conveyor belt of
storage elements for operands, with new results injected into
the front storage element of the conveyor belt, passing along
the length of the belt as subsequent results are injected in
front of them, and eventually reaching the end and disap-
pearing. The operands can shift in the queue on cycle
boundaries according to the number of operands to be
inserted into the storage elements of the belt at the same
time.

The logical program model of the belt is evident from the
context shown in FIGS. 3A and 3B. In this logical program
model, the operations address the storage elements of belt as
a producer implicitly, while addressing the storage elements
of the belt as a consumer explicitly. Thus, operations can
randomly access the operands stored in the storage elements
of the belt. Each operation (such as an ADD) can specify a
logical belt temporal address for one or more source oper-
ands, where logical belt temporal address of zero is con-
ventionally the most recent value to have been injected. The
logical temporal address of the result operand can be omitted
from the semantic encoding of the operation as the logical
temporal address of the result operand is implicit to the
logical order of execution of the operation that produced the
result operand. During execution of the operation by a
respective functional unit, the functional unit accesses the
source operand corresponding to that logical belt temporal
address as its argument. Duplicate references to a logical
belt temporal address by one or more operations can be
permitted. Thus, from the logical view, the operations see
the storage elements of the belt as an array of operands that
they can index into, similarly to the array of registers that
appears in a general register machine. However, unlike a
register machine, the contents of the storage elements of the
conveyor belt change every time a new operand is injected
and the belt advances. Thus, an operation like “Add(3,4)”
means to add the fourth and fifth most recent operands to
have been injected into the storage elements of the belt,
inject the result back as a new entry at the front of the belt
at logical belt temporal address 0, and advance all the prior
contents of the belt to the next higher logical belt temporal
address except for the last, which falls off the end and
disappears. Once this ADD operation has been executed, the
arguments that it referenced at belt logical belt temporal
addresses 3 and 4 are now at logical belt temporal addresses
4 and 5 respectively. When multiple operands are produced
by the functional units of the execution logic 109 in a given
cycle, the multiple operands can be added to the front of the
belt at a cycle boundary for read access in the next cycle or
in subsequent cycles (until falling off the fixed length belt).
The belt is thus the realization of the ability to address into

20

35

40

45

12

the (recent) time stream of operands as produced by the
functional units. Hence, the term temporal addressing is
used, in contrast to the spatial addressing used to reference
registers or main memory.

In order to support the addition of a set N of zero or more
operands into the belt in a given cycle, a logical shift
operation that drops the same number N operands from the
belt can be performed prior to the given cycle.

The number of logical belt temporal addresses of the belt
is fixed and the belt is being continually filled with newly
injected operands. Consequently, the period during which a
given operand is available in the belt (before it falls off the
end) is necessarily brief. This is appropriate for the great
bulk of transient results, which have very brief lifetimes.
However, if a transient has a longer lifetime than the
duration of its period in the belt then it must be preserved
from being lost off the end. Preservation may involve
copying it to longer-lifetime non-temporal storage. It may
also involve passing it through a null (identity) computa-
tional instruction which simply returns its argument as its
result. This has the effect of re-injecting the operand again
at the front of the belt, where it will have another period of
life as it is moved toward the end by subsequent injections.
Obviously identity re-injection may be repeated if necessary.
It is also contemplated that the CPU/Core 102 can support
operations encoded within the instruction that arbitrarily
reorders belt contents (which can used for operand preser-
vation) as well as operations encoded within the instruction
that simply replaces the belt contents with a selection of its
existing content.

Note that the temporal addressing of the logical program
model of the belt as described herein requires some extra
intelligence in programs such as compilers and assemblers
that produce instruction sequences. These programs must
keep track of the logical belt temporal addresses of transient
operands stored in belt so that they can incorporate the
correct logical belt temporal addresses into the operation
encodings that they construct. Moreover, temporal address-
ing does not lend itself to manual creation of program
encodings. While it is not difficult (given appropriate data
structures) to track the positions of transient operands in
software, it is quite difficult to do so mentally. Generally,
except for extremely short code sequences (a handful of
instructions at most) it is best to use some symbolic naming
scheme.

In one embodiment, the belt is directly accessible by the
functional units of the execution logic of the CPU/Core 102.
The belt is measured in logical belt addresses (i.e., posi-
tions), where any position can hold any operand of any
supported size. The number of positions (length) of the belt
is fixed. For example, the length of the belt can be in the
range of 8 to 32 positions or possibly up to 64 positions.
Each position of the belt is limited in size, but is big enough
to hold all supported operand sizes. In one example, oper-
ands can be power-of-two sizes up to a maximum size. [fthe
maximum size is 8 bytes, the operands can be 1, 2, 4 and 8
bytes in size. If the maximum size is 64 bytes, the operands
can be 1, 2, 4, 8, 16, 32 and 64 bytes in size. Note that belt
is not measured in bits or bytes, the way the memory
hierarchy. The belt is not part of the memory hierarchy, at
all, and cannot be addressed by a memory address. The belt
can be accessed by the functional units more quickly than
cache and main memory of the memory hierarchy. Operands
can be loaded onto the belt from the memory hierarchy
(cache memory and main memory) and stored from the belt
to the memory hierarchy by functional units that that execute
LOAD and STORE operations. The cache memory and the

US 9,747,216 B2

13

main memory of the memory hierarchy is much larger in
size than the belt. For example, the [.1 data cache is typically
16 KBytes in size or more and main memory is much larger.
Furthermore, the cache memory and the main memory of the
memory hierarchy supports dynamic addressing and point-
ers, and can possibly be shared across cores and may support
coherent concurrent access across cores in multi-core
designs. Furthermore, the internal representation of the
operands as stored on the belt can be different from the
external representation of the operands as stored in the
memory hierarchy. The operands stored on the belt cannot
be changed once placed on the belt, which is a form of Static
Single Assignment. The belt is organized as storage ele-
ments or register for individual operands, not as an array of
bytes. The belt cannot be dynamically addressed and there is
no indexing of belt addresses, and there are no pointers into
the belt. The operands stored on the belt cannot be shared
across cores in a multicore configuration. In this case, each
core has its own belt, private to itself.

The management of the logical-to-physical address map-
ping for the belt storage elements 203 can involve incre-
menting all of the physical addresses for the whole set of belt
storage elements 203. This can be realized by shifting a
physical shift register. Alternatively, the effect of shifting the
whole set of storage elements can be achieved by shifting the
physical addresses of the register with wrap-around as
needed. In essence, the array of storage elements becomes a
circular buffer, and the belt storage elements 203 are imple-
mented as a circular queue. When this is done, the physical
array of belt storage elements that make up the circular
queue can be twice the size of the logical belt temporal
address space, i.e., if an instruction can specify eight dif-
ferent logical positions then there can be 16 physical posi-
tions in order to accommodate access to the current contents
of the belt and also have space to add operands to the front
of the belt if both conditions are maximal.

In yet another implementation, the belt storage elements
203 can be realized from the output latches or registers of the
functional units of the execution logic 109. In this case, each
functional unit producer retains it result in an output latch or
register, and each such register has an associated physical
address. Consumer functional units connect to these output
latches through the Belt interconnect network 207. The
output registers can be arranged as a CAM or distributed
register array or other suitable implementation.

In yet another implementation shown in FIGS. 9A-9E, the
functional units of the execution logic 109 can be organized
as multiple slots where a single slot can execute operations
of mixed latency while retaining the ability to issue one of
many supported operations each cycle. As a consequence, it
is possible for a single slot to produce the results of several
operations in the same cycle. For example, if a three-cycle
operation is issued in cycle zero, a two-cycle operation in
cycle one, and a one-cycle operation in cycle two, then all
three operations will produce their results in cycle three. To
keep the results from colliding, separate output registers can
be provided for each operation latency present on the slot,
and operations employ data paths to steer their results to the
output register appropriate for the latency of the operation.
In this configuration, each one of the output registers is a
producer for a given slot from the view of the logical belt.
The output registers can also be used as the physical storage
elements of the logical belt. Specifically, the output registers
of each slot can be organized as a shift register, where the
output register for the lowest latency operands (e.g., the lat-1
output register) is at the input end of the shift register and the
output register for the highest latency operands (e.g., the

10

15

20

25

30

35

40

45

50

55

60

65

14

lat-4 output register) is at the output end of the shift register.
The operands are shifted to the next-higher latency output
register between cycles. The operand contents of the highest
latency output register can migrate to a vacant output
register of another slot or to a buffer register (such as one
managed by the spiller unit as described herein) as needed.
This can aid in minimizing data traffic for adding operands
to the logical belt as they are produced.

FIGS. 9A-9E shows an exemplary slot-based organization
of functional units employing three functional units (an
adder, a shifter and a multiplier) as part of a slot with four
output registers labeled “lat-1,” “lat-2,” “lat-3,” and “lat-4.”
In this example, the processing of five sequential ADD
operations (labeled add-1, add-2, add-3, add-4 and add-5)
over time is illustrated to show the shift operation of the
output registers between cycle. FIG. 9A shows the process-
ing of'the first add-1 operation. The add-1 operation (like the
add-2, add-3, add-4, and add-5 operations) is a one cycle
operation and thus produces an operand that is stored in the
lat-1 output register of the slot. Thus, the result of the add-1
operation is stored in the lat-1 output register of the slot as
shown. FIG. 9B shows the processing of the add-2 operation
with its result stored in the lat-1 output register of the slot.
The result of the add-1 operation is shifted between cycles
from the lat-1 output register to the lat-2 output register of
the slot. FIG. 9C shows the processing of the add-3 opera-
tion with its result stored in the lat-1 output register of the
slot. The result of the add-2 operation is shifted between
cycles from the lat-1 output register to lat-2 output register.
The result of the add-1 operation is shifted between cycles
from the lat-2 output register to the lat-3 output register. FIG.
9D shows the processing of the add-4 operation with its
result stored in the lat-1 output register of the slot. The result
of the add-3 operation is shifted between cycles from the
lat-1 output register to the lat-2 output register. The result of
the add-2 operation is shifted between cycles from the lat-2
output register to the lat-3 output register. The result of the
add-1 operation is shifted between cycles from the lat-3
output register to the lat-4 output register. FIG. 9D shows the
processing of the add-5 operation with its results stored in
the lat-1 output register of the slot. In this case, highest
latency output register (the lat-4 output register) is occupied,
and thus the shifting is configured to store the contents of the
lat-4 register (the results of the add-1 operation) to another
storage buffer, such as a vacant output register in another slot
or to a buffer register (such as one managed by the spiller
unit as described herein). The result of the add-4 operation
is shifted between cycles from the lat-1 output register to the
lat-2 output register. The result of the add-3 operation is
shifted between cycles from the lat-2 output register to the
lat-3 output register. The result of the add-2 operation is
shifted between cycles from the lat-3 output register to the
lat-4 output register.

Other physical implementations of the belt storage ele-
ments 203 can also be used.

A modern CPU has many functional units, any of which
may be producers of data for or consumers of data from any
of the others. Getting everything where it is supposed to go,
without interfering with everything else going elsewhere,
requires a routing network called a bypass network connects
all outputs with all inputs. In general, it is necessary that the
bypass network accommodate a routing from any producer
functional unit to any consumer functional unit, concur-
rently and with equal delay, so the bypass network imple-
ments a full crossbar. This crossbar is expensive in machine
terms, and its cost increases as a power function of the
number of functional units, so that it is often the bottleneck

US 9,747,216 B2

15

for CPU performance. In many CPUs, the hardware takes
longer to get a value through the bypass crossbar than it did
to compute the value in the first place.

In an out-of-order machine, the CPU maintains many
operations in a partially activated state until all the required
inputs are ready. In such a machine, an input of some
operation may be delayed while traversing the bypass cross-
bar, but some other operation may have all its (bypassed)
inputs and be ready for execution. With enough independent
operations it is possible to keep the CPU’s functional units
busy and hide the delay in the bypass. However, many
programs contain long dependency chains in which the
result of any one operation is needed as an argument to the
immediately following operation, and there are few or no
other operations to execute. In that case each operation must
wait for the full bypass time before it can execute, typically
cutting the overall performance in half or worse.

In-order machines like VLIWs defer the problem of
scheduling independent operations to a compiler rather than
using CPU hardware for scheduling. However, a depen-
dency chain in an in-order machine also requires that each
operation complete and its result traverse the bypass before
the next operation can execute. Because the hardware must
assume dependency, in-order machines typically include the
bypass time in the main cycle time, sharply lengthening the
cycle. This causes every operation, whether dependent or
not, to pay the bypass cost. Partly as a result, in-order
machines typically have clock rates that are less those of
out-of-order machines. To reduce the crossbar overhead,
some VLIW machines split the functional units into two or
more groups, such that bypass network within a group is
faster (typically by a cycle) than bypass between groups.
Much cleverness is devoted to scheduling instructions so
that dependency chains are entirely within one group, but
bypass overhead is significant regardless.

The execution logic 109 of the CPU/Core 102 as
described herein does not use register-to-register operation
semantics. Instead, it uses temporal addressing of the belt.
Nevertheless, it is still necessary to route operation results
from producing operations to the arguments of consuming
operations. This is the function of the belt interconnect
network 205.

In one embodiment shown in FIGS. 4A and 4B, the belt
interconnect network 205 is implemented as a split crossbar
to reduce the average cost of bypass over that of the general
every-producer-to-every-consumer routing network that is
usually employed. This split crossbar is most valuable for
statically-scheduled in-order machines, although the split
crossbar may also be employed in out-of-order machines to
reduce the average cost of dependency chains.

The operation of the split crossbar is based on the obser-
vation that, while all operations are equal in that any may
give or receive results from any other, some operations are
more equal than others. That is, certain operations occur
much more frequently than others during execution. In
particular, the common operations are those that have a
natural execution time of a single cycle, while those that
naturally would take two or more cycles are less common
both as producers or consumers of operands. The split
crossbar is organized to provide a dedicated shorter path for
operations that provide their results in one cycle, while the
results of operations taking two or more cycles to execute
follow a longer path. This split by latency is different from
the existing art that splits the bypass crossbar by pipeline (or
equivalently by encoding slot in a VLIW instruction, or by
functional unit).

10

15

20

25

30

35

40

45

50

55

60

65

16

As shown in FIGS. 4A and 4B, the split crossbar circuit
includes two parts, a lower crossbar part 401 that is capable
of routing the results produced by the lowest latency (single
cycle) operations, and only those results, to any consumer
functional unit, and an upper crossbar part 403 that is
capable of routing the higher latency results produced by the
other functional units (all other producers) to the lower part
401 where they are in turn routed to any consumer functional
unit. This is shown schematically in FIG. 4B.

In one embodiment, the split crossbar of FIGS. 4A and 4B
can be used to route operands between functional units of a
slot-based architecture as described above with respect to
FIGS. 9A-9E. An example of this organization is shown in
FIGS. 5A and 5B. FIG. 5A shows three functional units (an
adder, a shifter and a multiplier) organized as a part of a slot.
All three functional units access source operands via shared
input data paths 501A, 501B for the slot. The adder and
shifter functional units produce results in one cycle and thus
store their results in the “lat-1” output register via shared
output data path 503A. The multiplier functional unit pro-
duces results in three cycles and thus store its results in the
“lat-3” output register via output data path 503B. FIG. 5B
shows the organization of output result registers of the slot,
including four output registers labeled “lat-1,” “lat-2,” “lat-
3,” and “lat-4.” Note that each one the four output registers
is a producer for a given slot from the view of the logical
belt. In this type of organization, the split crossbar of FIGS.
4A and 4B can be configured to route operands as follows.
The lower crossbar part 401 is configured to route the results
produced by the lowest latency (single cycle) operations for
every slot of functional units, and only those results, to any
consumer functional unit. Thus, in the example of FIGS. 5A
and 5B, the lat-1 output register for each slot feeds the input
side (top side) of the lower cross-bar part 401. The upper
crossbar part 403 is configured to route the higher latency
results produced by the slots of functional units to the lower
crossbar part 401 (all other producers), where they are in
turn routed to any consumer functional unit. Thus, in the
example of FIGS. 5A and 5B, the “lat-2” to “lat 4” output
registers for each slot, if used, feed the input side (top side)
of the upper crossbar part 403. From the point of view of the
split crossbar, the lowest latency result operands shifted out
of the latl output registers of the slots as described above
with respect to FIGS. 9A-9E become higher latency result
operands that are routed by the upper crossbar part 403. The
lower crossbar part 401 allows routing of any one of the
lowest latency result operands stored in the lat-1 registers of
the slots to any functional unit for use in the next cycle. An
example where the functional units are organized with five
slots capable of executing one-cycle operations and an
additional forty other multi-cycle operations. The upper
crossbar part 403 will route a selected single one of the 40
multi-cycle producers to the lower crossbar part 401, where
it joins the five single-cycle results. The lower crossbar part
401 routes one of the six values to a selected destination
consumer functional unit. In consequence, what had been a
45-t0-1 routing circuit becomes (for single-cycle ALU
results) a 6-to-1 circuit, or (for other values) a 40-to-1 circuit
cascaded with a 6-to-1 circuit. A 6-to-1 routing is sharply
faster than a 45-to-1, while a 40-to-1 cascaded with a 6-to-1
is not much worse than a 45-to-1 network.

Note that the fundamental cycle time of the CPU/Core
102 can be set so as to include a basic single-cycle operation
and a traversal of the lower part 401 of the split crossbar.
This is significantly faster than the basic operation plus a
traversal of a full crossbar would be. As a result, the cycle
time can be reduced (or equivalently the clock rate

US 9,747,216 B2

17

increased), and most operations using the single-cycle
operations (whether statically scheduled or involved in
dependency chains) can execute more quickly. Of course, all
the multi-cycle operation results must traverse both parts
401 and 403. Depending on the physical implementation, it
may even take longer to traverse both halves of a split
bypass than it would have taken to traverse a unified bypass.
However, the values traversing both halves are a small
portion of the total traffic, while the larger portion (from the
single-cycle operations) is significantly accelerated, yielding
a net saving on average.

This example focuses on the ALUs as the generators of
the largest part of the most time-critical traffic in the split
crossbar. However, CPUs and programs vary in their use of
different kinds of operations, and the designer of a particular
CPU should choose which instructions can afford to suffer
traversal of both halves of the split crossbar, and which are
critical and need to be routed only by the lower part 401. The
choice may be guided to achieve best performance overall
for a particular program mix, or to lower the cost of
particularly critical operations, or to meet some other appro-
priate criterion. It is also possible to apply the split more than
once, so that the crossbar circuit is split into three or more
sections to accommodate more than two priority classes of
operations.

The execution logic 109 of the CPU/Core 102 can also
include an internal memory circuit, which is referred to
herein as the scratchpad 601, as shown in FIG. 6. The
scratchpad 601 can be accessed (SPILL operation) to copy
an operand from the logical belt (employing logical-to-
physical address mapping to access the corresponding belt
storage element 203) before it overwritten, such it can be
stored for an arbitrarily long time and used for a later
operation. The scratchpad 601 can also be accessed (FILL
operation) to copy an operand from scratchpad 601 to the
front of the logical belt (employing logical-to-physical
address mapping to access the corresponding belt storage
element 203) for access by subsequent operations. Thus, the
fill operation drops the result operand on the front of the
logical belt just like an ADD or any other operation. Oper-
ands are referenced at a specific position in the scratchpad
601 by a literal byte number. Furthermore, the scratchpad
601 is byte addressable (continuing its similarity to memory)
and so can hold several different operands at different
positions. Operands written to the scratchpad 601 may be of
any supported size, and the positions occupied can be
naturally aligned for that width. Thus, the given byte address
for each operand is aligned on predefined boundaries within
the address space of the scratchpad 601. All scratchpad
addresses are static (specified at compile time), like register
numbers in a general register machine. Thus, the given byte
address for each operand is statically-assigned.

The contents of the belt storage elements 203 and the
scratchpad 601 can be managed by a functional unit referred
to as a spiller unit 701 as shown in FIG. 7. The spiller unit
701 is a hardware engine that is configured to save and
restore processor context (including contents of the belt and
possibly the scratchpad 601) across subroutine or functional
calls. The operation of the spiller unit allows the belt to be
configured such that it is strictly local to the current execu-
tion context. Thus, each subroutine or function body can
have its own private logical belt. The operation of the spiller
unit can also allow the scratchpad 601 to be configured such
that it is strictly local to the current execution context. Thus,
each subroutine or function body can have its own private
scratchpad 601. This current execution context corresponds
to a subroutine or function in the program source code, not

10

15

20

25

30

35

40

45

50

55

60

65

18

to a thread as in other architectures. If the code includes a
CALL operation, the spiller unit 701 is configured to save
and restore processor context (including contents of the
logical belt and possibly the scratchpad 601), and then
restore the processor context when the called context
executes a RETURN operation.

The CALL operation is an operation (or sequence of
operations) within an instruction sequence (referred to as the
Caller) that directs execution to a specified subroutine or
function frame activation (referred to as the Callee). The
function frame activation is an active instance of a subrou-
tine or function which has not yet terminated with a
RETURN operation. The RETURN operation within the
Callee directs execution back to the Caller. Nested CALL
and RETURN operations can be used to encapsulate frame
activation within another. The semantics of the CALL
operation can be embodied in a single operation or possibly
be broken up into a stereotyped sequence of operations. Both
cases are referred to as a CALL operation herein. Similarly,
the semantics of the RETURN operation can be embodied in
a single operation or possibly be broken up into a stereo-
typed sequence of operations. Both cases are referred to as
a RETURN operation herein.

As shown in FIG. 8, the CALL operation can reference
the entry point of the Callee as well as zero or more operands
stored on the logical belt of the Caller at the time of the
CALL operation that are to be passed from the Caller to the
Callee. In the example of FIG. 8, the CALL operation
references the entry point of the Callee “func™ as well as four
operands stored on the logical belt of the Caller at logical
belt addresses 1, 5, 3 and 3 at the time of the CALL operation
that are to be passed from the Caller to the Callee. The
execution logic 109 processes the CALL operation by defin-
ing a private logical belt for the Callee that is initially empty.
The operands (if any) that are referenced in the CALL
operation are copied from the Caller’s logical belt and added
to the front of the Callee’s logical belt. Multiple operands
can be referenced in the CALL operation and copied from
the Caller’s logical belt and added to the front of the Callee’s
logical belt. Furthermore, the spiller unit 701 can be con-
figured to save the processor context at the time of the CALL
operation (including the contents of the Caller logical belt)
in temporary storage, if need be. In the example of FIG. 8,
the four operands stored on the logical belt of the Caller at
logical belt addresses 1, 5, 3 and 3 are added to the front of
the Callee’s logical belt as shown. The resultant Callee
logical belt (which includes the operands copied from the
Caller logical belt and added to the front of the Callee’s
logical belt) can be accessed one cycle later and processed
by the operations of the Callee function, which can operate
over multiple machine cycles in many cases as indicated by
the dashed-line cycle boundaries of FIG. 8.

The Callee function initiates a RETURN operation to
return the control flow back to the Caller. The RETURN
function can reference zero or more operands stored on the
Callee logical belt at the time of the RETURN operation that
are to be passed from the Callee to the Caller. In the example
of FIG. 8, the RETURN operation references one operand
stored on the Callee logical belt at logical belt address 4 at
the time of the RETURN operation that is to be passed from
the Callee to the Caller. The execution logic 109 processes
the RETURN operation by using the spiller unit 701 to
restore the saved processor context of the Caller, including
the contents of the Caller logical belt. The operands (if any)
that are referenced in the RETURN operation are copied
from the Callee’s logical belt and added to the front of the
Caller’s logical belt, which can push a corresponding num-

US 9,747,216 B2

19

ber of the restored operands off the end of the Caller’s
logical belt. Multiple operands can be referenced in the
RETURN operation and copied from the Callee’s logical
belt and added to the front of the Caller’s logical belt. In the
example of FIG. 8, the one operand stored on the Callee
logical belt at logical belt address 4 is added to the front of
the Caller’s logical belt as shown. The resultant Caller
logical belt (which includes the operands copied from the
Callee logical belt and added to the front of the Caller’s
logical belt) can be accessed one cycle later and processed
by the subsequent operations of the Caller.

Note the processing of the CALL and RETURN opera-
tions can occur in a nested manner when the program code
includes nested CALL operations. Furthermore, the same
processing of the CALL operation is carried out in the event
that an interrupt occurs, which can be treated as an invol-
untary CALL operation. After the interrupt has been
handled, the operations perform a RETURN operation that
restores the processor context.

The logical belts can also be marked (associated) with
different frame identifiers corresponding the specific CALL
operations and corresponding subroutine or function frame
activations that define the logical belts. In this case, the
current frame number (which is assigned to the Callee
function activation) can be derived by incrementing the
frame number for the Caller function activation when pro-
cessing the CALL operation. This frame number can be
decremented when processing the RETURN operation such
that the frame number then matches the Caller. Access to the
logical belts can be controlled such that operations within a
specific function frame activation can only access the logical
belt that is tagged (associated) with the frame number that
matches the specific function frame activation. In this man-
ner, a private logical belt is accessed by each function frame
activation.

Similarly, the address space of the scratchpad 601 can be
marked (associated) the frame identifiers, and access to the
scratchpad 601 can be controlled such that operations within
a specific subroutine or function can only access the scratch-
pad access range is tagged (associated) with the frame
number that matches the specific subroutine or function. In
this manner, a private scratchpad is accessed by each sub-
routine or function. The address space of the scratchpad 601
can be managed with a window-based logical-to-physical
mapping scheme to provide the private scratchpad for each
function. In one embodiment, the physical registers of the
scratchpad 601 can be arranged as a circular buffer and the
window-based logical-to-physical mapping scheme allows
access to a specific window (portion) of the circular buffer
as assigned to the Callee frame identifier but hides access to
the other portions of the circular buffer. In this case, the
CALL operation can appear to rotate the registers of the
circular buffer under the window, bringing the address space
of the scratchpad 601 assigned to the Callee frame identifier
into view, and hiding the other address space of the scratch-
pad 601. The RETURN operation can then move the win-
dow back to its position prior to the CALL operation,
bringing the address space of the scratchpad 601 assigned to
the Caller frame identifier into view, and hiding the other
address space. The address space window of the scratchpad
601 that is assigned to the Caller frame identifier can have
a variable size. The variable size can be dictated by an
argument of a predefined operation called the SCRATCHF
operation that can be encoded as part of a subroutine or
function. The argument of the SCRATCHF operation is
passed to the window-based logical-to-physical mapping
scheme to define the size of the address space window of the

25

30

35

40

45

20

scratchpad 601 that is assigned to the Callee frame identifier.
In the event that the address space window of the scratchpad
601 that is assigned to a particular function is required to be
spilled by the spiller unit 701, the size of the address space
window as defined by the argument of the SCRATCHF
operation can be used to save and restore only the address
space window of that particular function across CALL
operations. An attempt to address the scratchpad 601 beyond
the allocated number can cause a fault in the executing
program, analogous to addressing unallocated memory.

Note that certain operations can be in-flight when the
CALL operation is executed. In this case, these operations
can be allowed to complete execution and any result operand
can be tagged (associated) with the frame identifier for the
operation that produced the result operand. The spiller unit
701 can be configured to process the frame identifiers
associated with the result operands to identify those result
operands that are not produced by the operations of the
Callee (which necessary includes the result operands pro-
duced by such in-flight operations) and temporarily store
such result operands such that they are not added to the
private logical belt for the Callee. The spiller unit 701 is
further configured to add such result operands to the private
logical belt for the Caller in conjunction with the processing
of the RETURN operation.

While the hardware storage of the scratchpad 601 is
necessarily of fixed size, the actual utilization of that storage
varies from call frame context to call frame context. The
program model can provide the illusion that each new call
frame context has its own complete scratchpad, saved and
restored across nested calls. However, if only a part of the
physical scratchpad is in actual use in a given frame then it
is wasteful to save and restore the unused portion.

In one embodiment, the execution logic of the CPU/Core
102 maintains two registers Base and Fence, and treats the
scratchpad addresses coming from the instruction stream as
logical addresses. The logical addresses are mapped to
physical scratchpad addresses by adding a respective logical
address to the address stored in the Base register (which is
referred to below as Base), modulo the size of the scratchpad
601 (i.e. with wrap-around), and the physical addresses are
then used to index the physical scratchpad to effect the
access. This address mapping takes place on both SPILL and
FILL operations and treats the physical scratchpad as a ring
buffer.

The address stored in the Fence register (which is referred
to below as Fence) partitions the logical and physical
address space of the scratchpad 601 into valid and invalid
parts, so it is necessary to set the Fence for a given frame
activation to reflect the amount of scratchpad 601 that the
call frame activation will need to access. As is well known,
special registers such as the Fence register may have their
value set directly by operations encoded in the executing
program, or by STORE operations that address the register
in a memory mapped I/O region of the memory hierarchy, or
as a side effect of other execution. In the preferred embodi-
ment, the Fence is set by executing the SCRATCHF opera-
tion by the program, where the SCRATCHF operation has a
static argument giving the amount of scratchpad memory
needed by the frame activation. The SCRATCHF argument
must not exceed the total amount of physical scratchpad
present in the machine. After the execution of SCRATCHF,
possibly after some latency while the Fence changes take
effect, the program is able to access scratchpad logical
addresses from zero through the amount requested by
SCRATCHF.

US 9,747,216 B2

21

Before permitting the physical access, the logical address
is checked against Fence, and only logical addresses
between zero and Fence are permitted. Invalid addresses are
rejected using whatever fault reporting mechanism is in use
by the machine. This may instead be implemented such that
the Fence contains a physical address and the check is
against the physical address after mapping, if convenient.

The CALL, RETURN and SCRATCHF operations inter-
act with the scratchpad 601 in the following steps.

In one step, the Caller function executes the CALL
operation. In executing the CALL operation, the execution
logic of the CPU/Core 102 saves the current address of Base,
and sets Base to the physical position corresponding to
Fence. This has the effect of making the formerly valid and
accessible part of scratchpad 601 be no longer accessible to
the new call frame activation. The spiller unit 701 can be
configured to save, or arrange to be saved, the portion of
scratchpad 601 that was formerly valid as needed.

In another step, the Called function (the Callee) executes
the SCRATCHF operation. In executing the SCRATCHF
operation, the execution logic of the CPU/Core 102 sets
Fence to the logical sum of Base and the SCRATCHF
argument. This has the effect of making the portion of
scratchpad 601 between Base and Fence be valid and
accessible to the program code of the Callee. The spiller unit
701 can be configured to verify that all previous scratchpad
content in the newly accessible portion of scratchpad 601
have been successfully saved, stalling if necessary to wait
for saving. Furthermore, the spiller unit 701 can optionally
(and preferably) be configured to clear the newly accessible
portion of scratchpad 601 so that there are no residual
operands left from its prior use.

In another step, the execution logic of the CPU/Core 102
can perform SPILL and FILL operations that are part of the
Callee, which access valid portions of the scratchpad 601 as
described herein.

In another step, the execution logic of the CPU/Core 102
can perform a RETURN operation that is part of the Callee.
In executing the RETURN operation, the execution logic of
the CPU/Core 102 sets Fence to the physical position
corresponding to Base. This has the effect of making inac-
cessible the portion of scratchpad 601 that was formerly
accessible to the Callee. Furthermore, the execution logic of
the CPU/Core 102 restores Base to the value previously
saved during CALL. This has the effect of restoring acces-
sibility to that portion of scratchpad 601 that had been
accessible during the Caller frame activation that is being
returned to. The spiller unit 701 can be configured to restore
the former contents of the newly accessible caller’s portion
of scratchpad 601, stalling as necessary to complete the
restore. The execution logic of the CPU/Core 102 can then
continue execution of the Caller frame activation, which can
include further SPILL, FILL, CALL and RETURN opera-
tions.

The save and restore of the contents of the scratchpad 601
as carried out by the spiller unit 701 can be effected in one
of three ways. In the first way, save is performed as part of
the CALL operation or SCRATCHF operation, and restore
as part of the RETURN operation. This approach is simple
to implement but forces CALL/SCRATCHF and RETURN
to stall while save and restore takes place.

In a second approach, each possible logical address in the
scratchpad 601 is associated with a first flag indicating
whether data at the logical address has been saved since the
current frame activation was entered by a CALL operation.
For each SPILL operation, the first flag is checked and, if
necessary, the spiller unit 701 performs a save of the

10

15

20

25

30

35

40

45

50

55

60

65

22

scratchpad data that would be overwritten, and changes the
flag to indicate that a save has taken place. A second flag is
also associated with each possible logical address in the
scratchpad, which indicates whether data at the logical
address has been restored since the current frame activation
was returned to by a RETURN operation. For each FILL
operation, the second flag is checked and, if necessary, the
spiller unit 701 performs a restore of the formerly saved
contents, and changes the second flag to indicate that a
restore has taken place. This approach has the advantage that
the SCRATCHEF operation, the Base and Fence registers, and
the logical-to-physical mapping are no longer necessary, but
it has the drawback that the SPILL and FILL operations will
stall for save and restore to take place.

In the preferred approach, the spiller unit 701 of the
execution logic of the CPU/Core 102 is implemented by a
free-standing asynchronous save/restore engine or logic
circuit (referred to as the Spiller below) which can be
notified of a range of scratchpad addresses to be saved or
restored, and which performs the save or restore in the
background while program execution continues asynchro-
nously.

In this approach, the CALL operation does not itself save
the scratchpad portion accessible to the Caller frame acti-
vation, but instead merely notifies the Spiller that the
scratchpad portion is eligible for saving. Similarly, the
RETURN operations does not itself restore the previous
content of the portions of scratchpad that had been used by
the exiting Callee, but merely notifies the Spiller that such
portion of scratchpad 601 is eligible for restoration.

As it is unknown to the Spiller whether the next action by
the program will be a CALL (requiring save) or a RETURN
(requiring restore), the Spiller must follow a policy in its
saving and restoring that can deal efficiently with either
future action. The policy must balance the resources it
devotes to the possibility of a future CALL with those that
it devotes to the possibility of a future RETURN. The
optimal policy varies with the size of the physical scratch-
pad, the save/restore bandwidth of the Spiller, and the
excepted behaviors of executed programs. In general, the
policy will endeavor to have both saving and restoring done
in advance of need.

A simple way to effectuate the Spiller policy is to recog-
nize that the Base and Fence addressing mechanism treats
the physical scratchpad as a ring buffer, where CALL/
SCRATCHF operations advance the Base and Fence toward
higher physical addresses (with wraparound) while the
RETURN operation moves them toward lower physical
addresses, also with wraparound. Hence, the youngest data
in the physical scratchpad are between Base and Fence,
while the next youngest are at the lower addresses adjacent
to Base, while the oldest are at the higher addresses adjacent
to Fence. The next youngest are those that will need to be
restored in the event of a RETURN, while the oldest are
those that will need to be saved in the event of a CALL.

Given this organization, the execution logic of the CPU/
Core 102 maintains a save-point register storing a save-point
address SP that indicates that the scratchpad contents
between Fence and SP has been saved and the scratchpad
contents between SP and Base remains to be saved. Note that
data between the Base and Fence is in active use and need
not be saved yet. Likewise, the execution logic of the
CPU/Core 102 maintains a restore-point register storing a
restore-point address RP that indicates that the scratchpad
contents between Base and RP has been restored and that
scratchpad contents between RP and Fence remains to be
restored. Again, note that data between Fence and Base is in

US 9,747,216 B2

23

active use and should not be destroyed by restoring previ-
ously saved data. The execution logic is further configured
to evaluate changes to Base and Fence and identify those
that open a gap between SP and Base (after a CALL/
SCRATCHF), which is closed by saving and incrementing
SP, or those that open a gap between Fence and RP (after a
RETURN), which is closed by restoring and decrementing
RP, all with wraparound as appropriate.

Because this approach does save and restore in the
background, it is immune to stall unless the demand for
save/restore actions as driven by program execution exceeds
the save/restore bandwidth of the Spiller. Such an excess can
be detected (for a CALL) when a SCRATCHF would cause
Fence to be set beyond SP. It can also be detected (for
RETURN) where Base would be set to a value before RP. In
either of these conditions the program must stall and wait for
the Spiller to catch up. Details of exemplary operations of
the execution logic in conjunction with the save and restore
operations of Spiller that follow this approach are shown in
FIGS. 10A-10F.

FIG. 10A shows the context of the Base, Fence, SP and
RP registers where the execution is a steady state with the
Spiller inactive. In this case, the scratchpad data portions
outside the window for the active frame (between Base and
Fence) have been saved (as indicated by SP and Fence
pointing to the active window) and nothing remains to be
saved (as indicated by SP and Base pointing to the same
scratchpad address). Thus, the scratchpad data portions
outside the window for the active frame can be overwritten
without stall as noted in FIG. 10A. Similarly, the scratchpad
data portions outside the window for the active frame
(between Base and Fence) have been restored (as indicated
by RP and Base pointing to the active window) and nothing
remains to be restored (as indicated by RP and Fence
pointing to the same scratchpad address). Thus, the scratch-
pad data portions outside the window for the active frame
can be returned to without stall as noted in FIG. 10A.

FIG. 10B shows the context of the Base, Fence, SP and
RP registers after a CALL operation and before a
SCRATCHEF operation. In this case, the execution logic of
the CPU/Core 102 has set Base to the physical position
corresponding to Fence. The difference between SP and
Base defines a portion of the scratchpad (between SP and
Base) that needs to be saved. Note that scratchpad data
portions outside this window (between SP and Base) can be
overwritten without stall as noted in FIG. 10B. Moreover,
none of the scratchpad data remains to be restored (as
indicated by RP and Fence pointing to the same scratchpad
address). Thus, all of the scratchpad data can be returned to
without stall as noted in FIG. 10B.

FIG. 10C shows the context of the Base, Fence, SP and
RP registers after a SCRATCHF operation (and before a
RETURN operation) with the Spiller working. In executing
the SCRATCHEF operation, the execution logic of the CPU/
Core 102 sets Fence to the logical sum of Base and the
SCRATCHF argument to allocate the scratchpad data por-
tions between Base and Fence to the active frame. In this
case, the difference between SP and Base defines a portion
of the scratchpad outside the window for the active frame
(between Base and Fence) that needs to be saved. The
execution logic notifies the Spiller that this scratchpad
portion between SP and Base is eligible for saving. The
Spiller can operate to save a copy of the contents of this
scratchpad portion (between SP and Base) in an asynchro-
nous manner without stall as noted in FIG. 10C. Note that
scratchpad data portions outside both the window for the
active frame (between Base and Fence) and the save window

10

15

20

25

30

35

40

45

50

55

60

65

24

that the Spiller is saving (between SP and Base) can be
overwritten without stall as noted in FIG. 10C. Moreover, all
scratchpad data portions outside the window for the active
frame (between Base and Fence) have been restored (as
indicated by the RP and Base pointing to the same address)
and nothing remains to be restored (as indicated by RP and
Fence pointing to the window for the active frame). Thus,
the scratchpad data portions outside the window for the
active frame can be returned to without stall as noted in FIG.
10C.

FIG. 10D shows the context of the Base, Fence, SP and
RP registers after a SCRATCHF operation (and before a
RETURN operation) with the Spiller having completed
saving the contents of the scratchpad portion (between SP
and Base) as initiated in FIG. 10C. After the save operation
is complete, SP is set to Base as shown. Similar to FIG. 10A,
in this case, the scratchpad data portions outside the window
for the active frame (between Base and Fence) have been
saved (as indicated by SP and Fence pointing to the active
window) and nothing remains to be saved (as indicated by
SP and Base pointing to the same scratchpad address). Thus,
the scratchpad data portions outside the window for the
active frame can be overwritten without stall as noted in
FIG. 10D. Similarly, the scratchpad data portions outside the
window for the active frame (between Base and Fence) have
been restored (as indicated by the RP and Base pointing to
the active window) and nothing remains to be restored (as
indicated by RP and Fence pointing to the same scratchpad
address). Thus, the scratchpad data portions outside the
window for the active frame can be returned to without stall
as noted in FIG. 10D.

FIG. 10E shows the context of the Base, Fence, SP and RP
registers after a RETURN operation with the Spiller work-
ing In executing the RETURN operation, the execution logic
of the CPU/Core 102 sets Fence to the physical position
corresponding to Base, and restores Base to the value
previously saved during CALL. In this case, the difference
between RP and Fence defines a portion of the scratchpad
outside the window for the active frame (between Base and
Fence) that needs to be restored. The execution logic notifies
the Spiller that this scratchpad portion between RP and
Fence is eligible for restoring. The Spiller can operate to
restore the contents of this scratchpad portion (between RP
and Fence) asynchronously without stall as noted in FIG.
10E. Note that scratchpad data portions outside both the
window for the active frame (between Base and Fence) and
the restore window that the Spiller is restoring (between RP
and Fence) can be returned to without stall as noted in FIG.
10E. Moreover, the scratchpad data portions outside the
window for the active frame (between Base and Fence) have
been saved (as indicated by SP and Fence pointing to the
active window) and nothing remains to be saved (as indi-
cated by SP and Base pointing to the same scratchpad
address). Thus, the scratchpad data portions outside the
window for the active frame can be overwritten without stall
as noted in FIG. 10E.

FIG. 10F shows the context of the Base, Fence, SP and RP
registers after a RETURN operation with the Spiller having
completed restoring the contents of the scratchpad portion
(between RP and Fence) as initiated in FIG. 10E. After the
restore operation is complete, RP is set to Fence as shown.
Similar to FIG. 10A, in this case, the scratchpad data
portions outside the window for the active frame (between
Base and Fence) have been saved (as indicated by SP and
Fence pointing to the active window) and nothing remains to
be saved (as indicated by SP and Base pointing to the same
scratchpad address). Thus, the scratchpad data portions

US 9,747,216 B2

25

outside the window for the active frame can be overwritten
without stall as noted in FIG. 10F. Similarly, the scratchpad
data portions outside the window for the active frame
(between Base and Fence) have been restored (as indicated
by the RP and Base pointing to the active window) and
nothing remains to be restored (as indicated by RP and
Fence pointing to the same scratchpad address). Thus, the
scratchpad data portions outside the window for the active
frame can be returned to without stall as noted in FIG. 10F.

Note that in the example of FIG. 10C, the SCRATCHF
operation does not cause Fence to be set beyond SP. In this
case, the save operations of the Spiller can be carried out
asynchronously with respect to the execution of the active
frame and the execution of the active frame does not need to
be stalled to allow for the save operations of the Spiller.
However, note that if SCRATCHF operation caused Fence
to be set beyond SP, the execution of the active frame would
need to be stalled to provide time for the Spiller to complete
its save operation. It is not necessary to stall immediately
when the SCRATCHF operation causes Fence to be set
beyond SP. Instead, stall may be deferred until a SPILL
operation addresses between SP and Fence. In this way, the
Spiller has extra time to do the necessary saving or restoring
in the background, without causing the program to stall, and
may avoid stall entirely before execution of the active frame
can resume.

Also note that in the example of FIG. 10E, the RETURN
operation does not restore Base to a value before RP. In this
case, the restore operations of the Spiller can be carried out
asynchronously with respect to the execution of the active
frame and the execution of the active frame does not need to
be stalled to allow for the restore operations of the Spiller.
However, note that if the RETURN operation does restore
Base to a value before RP, the execution of the active frame
would need to be stalled to provide time for the Spiller to
complete its restore operation. It is not necessary to stall
immediately when the RETURN operation restores Base to
avalue before RP. Instead, stall may be deferred until a FILL
operation addresses between Base and RP. In this way, the
Spiller has extra time to do the necessary saving or restoring
in the background, without causing the program to stall, and
may avoid stall entirely before execution of the active frame
can resume.

Note that similar operations can be carried out by the
Spiller in handling an Interrupt.

Also note that the logical belt temporal address of previ-
ously produced results depends on temporal production
order. Thus, a subsequent operation expecting to use a
particular result must know where in the sequence of results
the desired value was produced. More strongly, it must know
this at compile time when the operation was encoded by a
compiler, assembler or other tool. Consequently, while it is
possible for operations using temporal addressing to com-
plete execution out of order, the results must be inserted into
the storage elements of the belt using the scheduled order.
Thus, a CPU that utilizes temporal addressing may be
in-order or out-of-order with respect to execution, but must
be in-order with respect to argument fetch and result retire.
This means that temporal machines are naturally statically
scheduled.

It is also possible to employ the temporal addressing
mechanisms described herein in other CPU architectures,
such as dynamically scheduled out-of-order architectures
employed by most modern general-register processors. As in
these machines, a dynamically scheduled belt can be used to
virtualize the belt (corresponding to virtualizing the general
registers) so that logical belt temporal address are merely

10

15

20

25

30

35

40

45

50

55

60

65

26

names that are mapped by a hardware scheduler to internal
buffer numbers. During execution operands would come
from buffers and results go to buffers, and the apparent belt
would only be realized back to the architectural state when
an interrupt or other event caused the out-of-order execution
to break off. Such a design would have the encoding entropy
advantages of a belt machine, but internally would resemble
a conventional out-of-order design.

There have been described and illustrated herein several
embodiments of a computer process and corresponding
method of operations. While particular embodiments of the
invention have been described, it is not intended that the
invention be limited thereto, as it is intended that the
invention be as broad in scope as the art will allow and that
the specification be read likewise. For example, the func-
tionality of the CPU 101 as described herein can be embod-
ied as a processor core and multiple instances of the pro-
cessor core can be fabricated as part of a single integrated
circuit (possibly along with other structures). It will there-
fore be appreciated by those skilled in the art that yet other
modifications could be made to the provided invention
without deviating from its spirit and scope as claimed.

What is claimed is:

1. A computer processor for use with system memory, the

computer processor comprising:

at least one level of cache that stores operands referenced
by at least one instruction:

a first memory structure, separate from the cache and the
system memory, that operates over multiple cycles to
temporarily store operands referenced by at least one
instruction;

a plurality of functional units that execute operations
specified by the at least one instruction over the mul-
tiple cycles, wherein the operations produce and access
operands stored in the first memory structure; and

a second memory structure, separate from the first
memory structure and the cache and the system
memory, that is accessed to copy an operand from the
first memory structure to the second memory structure
before it is removed from the first memory structure
and that is also accessed to copy an operand stored in
the second memory structure back to the first memory
structure for subsequent use by at least one functional
unit, wherein the second memory structure is organized
with a byte-addressable memory space and all operands
stored in the second memory structure are accessed by
respective byte addresses in the byte-addressable
memory space.

2. A computer processor according to claim 1, wherein:

the respective byte addresses for all operands stored in the
second memory structure are aligned on predefined
boundaries within the second memory structure.

3. A computer processor according to claim 1, wherein:

the respective byte addresses for all operands stored in the
second memory structure are statically-assigned.

4. A computer processor according to claim 1, wherein:

the functional units include a spill unit that is configured
to store a copy of contents of the first memory structure
as well as contents of the second memory structure into
temporary memory in response to processing a CALL
operation, and to restore the copy of contents of the first
memory structure as well as contents of the second
memory structure as stored in the temporary memory in
response to processing a RETURN operation corre-
sponding to the CALL operation.

US 9,747,216 B2

27

5. A computer processor according to claim 1, wherein:

the functional units include a spill unit that is configured
to store a copy of contents of the first memory structure
as well as contents of the second memory structure into
temporary memory in response to processing an Inter-
rupt, and to restore the copy of contents of the first
memory structure as well as contents of the second
memory structure as stored in the temporary memory
after handling the Interrupt.

6. A computer processor according to claim 1, wherein:

the second memory structure comprises physical registers
arranged as a circular buffer.

7. A computer processor according to claim 6, wherein:

a window-based logical-to-physical mapping scheme
employing a frame identifier assigned to a particular
function activation is used to control access to a spe-
cific address space window of the circular buffer to only
that particular function.

8. A computer processor according to claim 7, wherein:

the specific address space window of the circular buffer
has a variable size.

9. A computer processor according to claim 8, wherein:

the variable size of the specific address space window of
the circular buffer is dictated by an argument of a
predefined operation that is encoded as part of a sub-
routine or function.

10. A computer processor according to claim 1, further

comprising:

save-restore logic which is notified of a range of addresses
within the second memory structure to be saved or
restored, and which performs the save or restore opera-
tions in the background while the execution of opera-
tions by the functional units continues asynchronously.

11. A computer processor according to claim 10, wherein:

when performing a save operation, the save-restore logic
is configured to perform a delayed stall of the execution
of operations by the functional units as dictated by
context managed by the computer processor.

12. A computer processor according to claim 10, wherein:

base and fence registers are maintained to store addresses
of the second memory structure for a current function
activation;

a save-point register is maintained that stores an address
SP that indicates that content of the second memory
structure between the address stored in the Fence
register and SP has been saved and that content of the
second memory structure between SP and the address
stored in the Base register remains to be saved; and

a restore-point register is maintained that stores an
address RP that indicates that content of the second
memory structure between the address stored in the
Base register and RP has been restored and that content
of the second memory structure between RP and the
address stored in the Fence register remains to be
restored.

13. A computer processor according to claim 12, further

comprising:

execution logic that is configured to identity changes to
the addresses stored in the Base and Fence registers that
open a gap between SP and the address stored in the
Base register in order to notify the save-restore logic
that the contents of the second memory structure
between SP and the address stored in the Base register
is eligible for saving; and

the execution logic that is further configured to identify
changes to the addresses stored in the Base and Fence
registers that open a gap between the address stored in

10

15

20

25

30

35

40

45

50

55

60

65

28

the Fence register and RP in order to notify the save-
restore logic that the contents of the second memory
structure between the address stored in the Fence
register is eligible for restoring.

14. A computer processor according to claim 13, wherein:

the execution logic updates the addresses stored in the
Base and Fence registers based on execution of at least
one of CALL, SCRATCHF, RETURN, and Interrupt
operations functionally similar to CALL and RETURN
operations.

15. A computer processor according to claim 13, wherein:

in response to notification that the contents of the second
memory structure between SP and the address stored in
the Base register is eligible for saving, the save-restore
logic is configured perform a save operation of such
contents in the background while the execution of
operations by the functional units continues asynchro-
nously or while the functional units undergo a stall as
dictated by the address stored in the Fence register and
SP;

in response to notification that the contents of the second
memory structure between the address stored in the
Fence register and RP is eligible for restoring, the
save-restore logic is configured perform a restore
operation of such contents in the background while the
execution of operations by the functional units contin-
ues asynchronously or while the functional units
undergo a stall as dictated by the address stored in the
Base register and RP.

16. A computer processor according to claim 15, wherein:

the functional units undergo a delayed stall during the
save operation of the save-restore logic in the event that
the address stored in the Fence register is set beyond
SP; and

the functional units undergo a delayed stall during the
restore operation of the save-restore logic in the event
that the address stored in the Base register is set to a
value before RP.

17. A computer processor according to claim 1, further

comprising:

at least one instruction fetch unit operably coupled to at
least one instruction cache and to at least one instruc-
tion buffer, wherein the at least one instruction fetch
unit is configured to fetch the instruction from the
memory system and store it in the at least one instruc-
tion buffer; and

a decode stage operably coupled to the at least one
instruction buffer, wherein the decode stage is config-
ured to decode the instruction stored in the at least one
instruction buffer.

18. A computer processor according to claim 1, wherein:

a first predefined operation copies an operand from the
first memory structure to the second memory structure;
and

a second predefined operation copies an operand stored in
the second memory structure back to the first memory
structure.

19. A computer processor according to claim 1, wherein:

the byte-addressable memory space of the second
memory structure is configured such that operations
within a particular subroutine or function executed by
the computer processor can access only a part of the
byte-addressable memory space of the second memory
that is associated with the particular subroutine or
function.

US 9,747,216 B2
29

20. A computer processor according to claim 19, wherein:

the part of the byte-addressable memory space of the
second memory that is associated with the particular
subroutine or function has a variable size dictated by
execution of an operation by the computer processor. 5

21. A computer processor according to claim 1, wherein:

parts of the byte-addressable memory space of the second
memory are marked with frame identifiers that are
associated with specific subroutines or functions; and

the memory byte-addressable space of the second 10
memory structure is configured such that operations
within a particular subroutine or function as executed
by a functional unit can access only a part of the
byte-addressable memory space of the second memory
that is marked by the frame identifier associated with 15
the particular subroutine or function.

#* #* #* #* #*

30

