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Decode DLOAD operation (with schedule latency)
o 47
[
£ i
Issue DLOAD operation for execution by Load Unit
505

Z

Load Unit allocates and configures a Retire Station that will store the
value of the result for the DLOAD operation; includes parameter data
that specifies the schedule latency for the DLOAD operation (i.e., when
such result, if available, will be retired by the Retire Station)

5207
P

Load Unit generates a load request and communicates such load request
to the L1 Data Cache

FIG. 5A
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DLOAD operation specifies parameter data representing a # of machine
cycles for the schedule latency (i.e., a number of machine cycles that the
results are to be retired); the load unit loads such parameter data into
the retire station allocated to handle the DLOAD operation
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Retire station uses the parameter data to configure a count-down timer
for the # of machine cycles specified by the parameter data
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DLOAD operation specifies parameter data
representing a statically-assigned operation
identifier for the schedule latency; the load unit
loads such parameter data into the retire station
allocated to handle the DLOAD operation
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COMPUTER PROCESSOR WITH DEFERRED
OPERATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present disclosure claims priority from U.S. Provi-
sional Patent Appl. No. 61/890,891, filed on Oct. 15, 2013,
entitled “Cache Support for a Computer Processor,” herein
incorporated by reference in its entirety.

BACKGROUND

1. Field
The present disclosure relates to computer processors
(also commonly referred to as CPUs).
2. State of the Art
A computer processor (and the program which it
executes) needs places to put data for later reference. A
computer processor design will typically have many such
places, each with its own trade off of capacity, speed of
access, and cost. Usually these are arranged in a hierarchal
manner referred to as the memory system of the processor,
with small, fast, costly places used for short lived small data
and large, slow and cheap places used for what doesn’t fit in
the small, fast, costly places. The memory system typically
includes the following components arranged in order of
decreasing speed of access:
register file or other form of fast operand storage;
one or more levels of cache memory (one or more levels
of the cache memory can be integrated with the pro-
cessor (on-chip cache) or separate from the processor
(oft-chip cache);

main memory (or physical memory), which is typically
implemented by DRAM memory and/or NVRAM
memory and/or ROM memory;

controller card memory; and

on-line mass storage (typically implemented by one or

more hard disk drives).

In many computer processors, the main memory of the
memory system can take several hundred machine cycles to
access. The cache memory, which is much smaller and more
expensive but with faster access as compared to the main
memory, is used to keep copies of data that resides in the
main memory. If a reference finds the desired data in the
cache (a cache hit) it can access it in a few machine cycles
instead of several hundred when it doesn’t (a cache miss).
Because a program typically has nothing else to do while
waiting to access data in memory, using a cache and making
sure that desired data is copied into the cache can provide
significant improvements in performance.

In computer processors operations have an inherent hard-
ware-determined time required for their execution, which is
referred to as execution latency. For most operations (such
as Add operation), the execution latency is fixed in terms of
machine cycles. For some operations, the execution latency
may vary from execution to execution depending on details
of the argument operands or the state of the machine.

The issue cycle of an operation (the machine cycle when
the operation begins execution) precedes the retire cycle (the
machine cycle when the execution of the operation has
completed and its results are available, and/or any machine
consequences must become visible). In the retire cycle, the
results can be written back to operand storage (e.g., register
file) or otherwise made available to functional units of the
processor. The number of machine cycles between the
desired issue and retire cycles is the schedule latency of the
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operation. Note that schedule latency is in terms of the order
of execution desired by the program, whether or not the
desired schedule can be actually achieved by a particular
operation execution. That is, the execution latency may not
equal the schedule latency.

For operations of fixed execution latency, it is convenient
to simply define the schedule latency to be equal to the
execution latency. If such an operation is placed in an
instruction issued in some machine cycle, then the results of
the operation will be available naturally during the retire
cycle, a number of machine cycles later corresponding to the
execution latency of the operation, and consumers of those
results can then be issued. This scheduling strategy is called
static scheduling with exposed pipeline, and is common in
stream and signal processors.

It can be difficult to statically schedule operations whose
execution latency varies from execution to execution. Com-
monly such operations have a known minimum execution
latency if all goes well, but if certain run-time events occur
then the operation is delayed and cannot complete until later.
Thus a load operation may complete three machine cycles
after issue if the desired data are found in the top level cache,
but may take hundreds of machine cycles if the data must be
fetched from DRAM memory. This problem is known as a
load stall, and such load stalls were the major driver for the
development of out-of-order superscalar architectures. Such
superscalars issue loads as soon as the address is known, as
far in advance of the code that will use the loaded value as
possible; the read then takes as long as it takes. While
waiting for the data, a superscalar machine schedules and
executes a dynamic number of other operations that are
ready to execute and don’t depend on the awaited value.
Such a machine doesn’t have a fixed number of delay slots,
but has in essence a run time determined variable number of
slots, as many as are needed for the data to load. Thus, a
superscalar machine does not stall unless it completely runs
out of operations that don’t depend on the loaded value. A
superscalar can have hundreds of operations in flight waiting
to complete, and many operations that are waiting for their
data. The cost is extreme complexity and a chip that is
spendthrift in power and area.

Computer processors that employ static scheduling with
an exposed pipeline are much simpler and much more
economical of power and area than superscalar architec-
tures. However, any actual stalls are much more painful,
because there may be operations that are ready to execute
(and that a superscalar would execute) but cannot be issued
because the lock-step nature of an in-order machine is
waiting for an irrelevant load to complete. Because of this
difficulty, static scheduling has come to be used only for
embedded applications in which the variability of memory
reference latencies is bounded and small. General-purpose
applications, where the variability is large, have come to use
dynamically scheduled architectures which mask the vari-
ability by executing operations out of program order as soon
as their arguments become available.

SUMMARY OF THE INVENTION

This summary is provided to introduce a selection of
concepts that are further described below in the detailed
description. This summary is not intended to identify key or
essential features of the claimed subject matter, nor is it
intended to be used as an aid in limiting the scope of the
claimed subject matter.

Tustrative embodiments of the present disclosure are
directed to a computer processor having execution logic that
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includes at least one functional unit and operand storage that
stores data that is produced and consumed by the at least one
functional unit. The at least one functional unit is configured
to execute a deferred operation whose execution produces
result data. The execution logic further includes a retire
station that is configured to store and retire the result data of
the deferred operation in order to store such result data in the
operand storage, wherein the retire of such result data occurs
at a machine cycle following issue of the deferred operation
as controlled by statically-assigned parameter data included
in the encoding of the deferred operation.

The statically-assigned parameter data can define a sched-
ule latency for the deferred operation and the execution of
the deferred operation can define an execution latency. In the
event that the execution latency expires before the schedule
latency, the retire station can be configured to buffer the
result data for at least one machine cycle following the
expiration of the execution latency. In the event that the
schedule latency expires before the execution latency, the
retire station can be configured to control the execution logic
to stall for at least one machine cycle following the expira-
tion of the schedule latency. In the event that a call operation
occurs within the schedule latency of the deferred operation,
the schedule latency can be defined to include a time period
executed within the callee of the call operation or can be
defined to exclude a time period executed within the callee
of the call operation. The execution logic can be configured
to discard any result data stored by the retire station in
conjunction with processing the call operation. The execu-
tion logic further can further include logic that saves data
pertaining to the deferred operation and uses the saved data
to reissue the deferred operation in response to returning
from the callee of the call operation.

In one embodiment, the statically-assigned parameter data
can represent a number of machine cycles between issuing
of the deferred operation and retiring the result data pro-
duced by execution of the deferred operation under the
assumption that such result data is available at the time of
retiring. The statically-assigned parameter data can be used
to configure a count-down timer whose output is used to
dictate the machine cycle in which the result data produced
by execution of the deferred operation is retired.

In another embodiment, the statically-assigned parameter
data can represent an operational identifier that is used by a
corresponding pickup operation whose execution dictates
the machine cycle in which the result data produced by
execution of the deferred operation is retired.

In one embodiment, the deferred operation can comprise
a deferred load operation that is executed by a load unit. A
retire station can allocated from a pool of retire stations such
that the allocated retire station stores result data produced by
the execution of the deferred load operation. The execution
of the deferred load operation by the load unit can involve
generating a load request for communication to a hierarchi-
cal memory system. The retire station can be configured to
monitor intervening store requests communicated to the
hierarchical memory system in order to determine if the
address data of such intervening store requests overlap with
the address of the deferred load operation handled by the
retire station, and if so stores the data of the store request for
retirement to the operand storage of the execution logic.

A method of operating a computer processor is also
provided that includes configuring at least one functional
unit to execute a deferred operation whose execution pro-
duces result data, and configuring a retire station to store and
retire the result data of the deferred operation in order to
store such result data in operand storage of the computer
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processor, wherein the retire of such result data occurs at a
machine cycle following issue of the deferred operation as
controlled by statically-assigned parameter data included in
the encoding of the deferred operation.

The statically-assigned parameter data of the method can
define schedule latency for the deferred operation and the
execution of the deferred operation defines an execution
latency. In the event that the execution latency expires
before the schedule latency, the method can further include
configuring the retire station to buffer the result data for at
least one machine cycle following the expiration of the
execution latency. In the event that the schedule latency
expires before the execution latency, the method can further
include configuring the retire station to control the execution
logic to stall for at least one machine cycle following the
expiration of the schedule latency.

In one embodiment, the statically-assigned parameter data
of the method can represent a number of machine cycles
between issue of the deferred operation and retiring the
result data produced by execution of the deferred operation
under the assumption that such result data is available at the
time of retiring. The method can further include using the
statically-assigned parameter data to configure a count-
down timer whose output is used to dictate the machine
cycle in which the result data produced by execution of the
deferred operation is retired.

In another embodiment, the statically-assigned parameter
data of the method can represent an operational identifier
that is used by a corresponding pickup operation whose
execution dictates the machine cycle in which the result data
produced by execution of the deferred operation is retired.

In another aspect, a computer processor is provided that
includes execution logic and at least one cache memory
integrated as part of an integrated circuit. The execution
logic includes at least one functional unit and operand
storage that stores data that is produced and consumed by the
at least one functional unit. The at least one functional unit
includes a load unit configured to execute a deferred load
operation whose execution communicates with the least one
cache memory to retrieve result data therefrom. The execu-
tion logic further includes a retire station that is configured
to store and retire the result data of the deferred load
operation in order to store such result data in the operand
storage, wherein the retire of such result data occurs at a
machine cycle following issue of the deferred load operation
as controlled by statically-assigned parameter data included
in the encoding of the deferred load operation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram of a computer
processing system according to an embodiment of the pres-
ent disclosure.

FIG. 2 is a schematic diagram of exemplary pipeline of
processing stages that can be embodiment by the computer
processor of FIG. 1.

FIG. 3 is schematic illustration of components that can be
part of the execution/retire logic of the computer processor
of FIG. 1 according to an embodiment of the present
disclosure.

FIG. 4 is schematic illustration of components that can be
part of the execution/retire logic and memory hierarchy of
the computer processor of FIG. 1 according to an embodi-
ment of the present disclosure.

FIGS. 5A-5C, collectively, is a flow chart that illustrates
exemplary operations carried out by the computer processor
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of FIGS. 1 and 4 in processing a given DLOAD operation
in accordance with the present disclosure.

FIG. 6 is a flow chart that illustrates exemplary operations
carried out by the load unit and retire station of the computer
processor of FIGS. 1 and 4 in processing a given DLOAD
operation with a schedule latency specified by a machine
cycle count included in the machine code of the DLOAD
operation.

FIG. 7 is a flow chart that illustrates exemplary operations
carried out by the load unit and retire station of the computer
processor of FIGS. 1 and 4 in processing a given DLOAD
operation with a schedule latency specified by a statically-
assigned operation identifier included in the machine code of
the given DLOAD operation.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Tlustrative embodiments of the disclosed subject matter
of the application are described below. In the interest of
clarity, not all features of an actual implementation are
described in this specification. It will of course be appreci-
ated that in the development of any such actual embodiment,
numerous implementation-specific decisions must be made
to achieve the developer’s specific goals, such as compli-
ance with system-related and business-related constraints,
which will vary from one implementation to another. More-
over, it will be appreciated that such a development effort
might be complex and time-consuming but would neverthe-
less be a routine undertaking for those of ordinary skill in the
art having the benefit of this disclosure.

As used herein, the term “operation” is a unit of execu-
tion, such as an individual add, load, store or branch
operation.

The term “instruction” is a unit of logical encoding
including zero or more operations. For the case where an
instruction includes multiple operations, the multiple opera-
tions are semantically performed together.

The term “hierarchical memory system” is a computer
memory system storing instructions and operand data for
access by a processor in executing a program where the
memory is organized in a hierarchical arrangement of levels
of memory with increasing access latency from the top level
of memory closest to the processor to the bottom level of
memory furthest away from the processor.

The term “cache line” or “cache block™ is a unit of
memory that is accessed by a computer processor. The cache
line includes a number of bytes (typically 4 to 128 bytes).

The computer processor of the present application
employs statically scheduled operations that execute with
much of the tolerance for latency variability as compared to
out-of-order architecture, while retaining the power, area
and complexity advantages of a statically-scheduled archi-
tecture. It is applicable to any variable-latency operation, of
which the Deferred Load or DLOAD operation as described
below is an example.

Specifically, the instruction set architecture of the com-
puter processor can be augmented so as to permit the
computer processor to distinguish the issue step of the
operation from the retire step of the same operation, where
the distinction is under program control. The issue step of
the operation is handled by normal encoding, as the opera-
tion would be encoded absent the invention. However,
means is also provided to separately control the occurrence
and timing of the retire step of the operation. The conse-
quence is that the schedule latency of the operation is under
explicit program control. The issue and retire steps can be
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6

temporally separated as much as possible to achieve the
greatest possible masking of the variability of the execution
latency. An operation in which the issue and retire steps have
been separated in time in this manner is herein called a
“deferred operation.”

In the event that the execution latency of the deferred
operation is less than the controlled schedule latency, then
the value of the result of the operation is retained in a buffer
provided for this purpose until the scheduled latency
expires, whereupon the contents of the buffer are provided
to the execution exactly as if the execution and schedule
latencies had been the same.

Alternatively, in the event the execution latency exceeds
the controlled schedule latency, then the execution of the rest
of the program is delayed (or stalls) until the execution
latency expires and the value of the result becomes avail-
able, whereupon the result of the operation is provided to the
execution, and execution is permitted to resume exactly as
if the execution and schedule latencies had been the same.

One method of controlling the schedule latency, appli-
cable in circumstances for which is it possible to statically
know the number of machine cycles between the desired
point of issue of an operation and the desired point of retire
of'the operation, is to encode cycle count data in the machine
code of the deferred operation. The cycle count data explic-
itly represents the desired schedule latency in zero or more
machine cycles. The count is counted down with each
machine cycle, and the schedule latency expires when the
count reaches zero. If the execution latency of the deferred
operation has not expired at the time that the schedule
latency expires, then the machine stalls until the execution
latency expires and the result of the deferred operation is
available. At this point, the result of the deferred operation
is retired. If the execution latency has already expired before
the schedule latency expires, then the result is buffered until
the expiration of the schedule latency when the count
reaches zero. At this point, the result of the deferred opera-
tion is retired.

Another method of controlling the schedule latency,
applicable in circumstance for which it is impossible to
statically know the number of machine cycles between the
desired points of issue and retire of the operation, is to
encode a statically assigned operation identifier in the
machine code of the deferred operation. At some subsequent
point, the machine code includes a separate “pickup” opera-
tion carrying the same operation identifier, which defines the
retire point of the original operation. The execution of the
pickup instruction controls the schedule latency of the
deferred operation. As before, if the execution latency of the
deferred operation has not expired at the point of pickup
operation, then the machine stalls until the execution latency
expires and the result of the deferred operation is available.
At this point, the result of the deferred operation is retired.
If the execution latency has already expired before the
execution of the pickup operation, then the result is buffered
until execution of the pickup operation. At this point, the
result of the deferred operation is retired.

In one embodiment, in the event that the machine stalls
waiting for the expiration of the execution latency, both the
issuance and retire stages of execution can stall with only
truly asynchronous activity, such as in-flight loads and
stores, continuing.

Various error conditions may be recognized, such as
pickup operation without previous issue of the same iden-
tifier, or issue reuse of an identifier without intervening
pickup. These errors may be ignored, or may be reported to
the program according to the architecture’s chosen fault
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policy. The architecture may also define a separate “refuse”
operation that discards a pending pickup operation that the
program no longer needs, so that the identifier may be
reused. With “refuse”, deferred pickup operations may be
issued speculatively in advance of possible need. The archi-
tecture may elect to distinguish speculative pickup opera-
tions from non-speculative, and alter the behavior of the
operation execution based on the distinction. For example,
for deferred pickup loads the architecture may honor page
traps immediately as they occur on non-speculative loads,
but defer them until pickup for speculative loads so as to
avoid paging on loads that in fact are never needed.

Other methods of controlling the schedule latency will be
evidently applicable, depending on the details of the rest of
the computer processor.

In general, the semantics of a program using deferred
operations will depend on the architecture-defined semantics
of'the interactions between the deferred operations and other
concurrent operations. Using the example of the DLOAD
operation, and considering when a program contains several
loads and stores to the same or overlapping addresses, the
result of the program depends upon the order of execution of
those accesses, which order must therefore be defined. The
execution order definition varies among different machine
architectures, ranging from strict program order to an order
defined by extra barrier instructions. Many machines specu-
latively execute load and store operations in an order that
conflicts with the defined order, but use hardware devices
such as snooping to make the program appear to have
executed in the defined order. Thus the defined order is in
terms of program-observable consequences, and not neces-
sarily physical execution.

In the presence of the program-controlled latency, it is
possible for the schedule latencies of two operations to
wholly or partially overlap. Hence it is necessary to define
the execution order in terms of the entire schedule latency.
As a practical matter, only two possible definitions offer both
ease of implementation and semantic utility: the ordering
may be in terms of the respective issue cycles of the
operations, or of their retire cycles. For a given program,
these orders (and the resulting program semantics) may
differ whenever loads and stores overlap in address and in
schedule latency, and similarly for other possible deferred
operations that may overlap with operations with which they
have a semantic dependency. Either of these definitions may
be advantageous in a given architecture, depending on the
rest of the design. The defined order can be ensured by
applying well known methods for order control used in
out-of-order machines, including compiler alias analysis and
hardware address snooping, among others.

In accordance with the present disclosure, a sequence of
instructions is stored in the memory system 101 and pro-
cessed by a CPU (or Core) 102 as shown in the exemplary
embodiment of FIG. 1. The CPU (or Core) 102 includes a
number of instruction processing stages including at least
one instruction fetch unit (one shown as 103), at least one
instruction buffer or queue (one shown as 105), at least one
decode stage (one shown as 107) and execution/retire logic
109 that are arranged in a pipeline manner as shown. The
CPU (or Core) 102 also includes at least one program
counter (one shown as 111), at least one L1 instruction cache
(one shown as 113), and an L1 data cache 115.

The L1 instruction cache 113 and the L1 data cache 115
are logically part of the hierarchy of the memory system
101. The L1 instruction cache 113 is a cache memory that
stores copies of instruction portions stored in the memory
system 101 in order to reduce the latency (i.e., the average
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time) for accessing the instruction portions stored in the
memory system 101. In order to reduce such latency, the L1
instruction cache 113 can take advantage of two types of
memory localities, including temporal locality (meaning that
the same instruction will often be accessed again soon) and
spatial locality (meaning that the next memory access for
instructions is often very close to the last memory access or
recent memory accesses for instructions). The L1 instruction
cache 113 can be organized as a set-associative cache
structure, a fully associative cache structure, or a direct
mapped cache structure as is well known in the art. Simi-
larly, the [L1 data cache 115 is a cache memory that stores
copies of operands stored in the memory system 101 in order
to reduce the latency (i.e., the average time) for accessing
the operands stored in the memory system 101. In order to
reduce such latency, the [.1 data cache 115 can take advan-
tage of two types of memory localities, including temporal
locality (meaning that the same operand will often be
accessed again soon) and spatial locality (meaning that the
next memory access for operands is often very close to the
last memory access or recent memory accesses for oper-
ands). The L1 data cache 115 can be organized as a set-
associative cache structure, a fully associative cache struc-
ture, or a direct mapped cache structure as is well known in
the art. The hierarchy of the memory system 201 can also
include additional levels of cache memory, such as a level 2
and level 3 caches, as well as system memory. One or more
of these additional levels of the cache memory can be
integrated with the CPU 202 as is well known. The details
of the organization of the memory hierarchy are not par-
ticularly relevant to the present disclosure and thus are
omitted from the figures of the present disclosure for sake of
simplicity.

The program counter 111 stores the memory address for
a particular instruction and thus indicates where the instruc-
tion processing stages are in processing the sequence of
instructions. The memory address stored in the program
counter 111 can be used to control the fetching of the
instructions by the instruction fetch unit 103. Specifically,
the program counter 111 can store the memory address for
the instruction to fetch. This memory address can be derived
from a predicted (or resolved) target address of a control-
flow operation (branch or CALL operation), the saved
address in the case of a RETURN operation, or the sum of
memory address of the previous instruction and the length of
previous instruction. The memory address stored in the
program counter 111 can be logically partitioned into a
number of high-order bits representing a cache line address
($ Cache Line) and a number of low-order bits representing
a byte offset within the cache line for the instruction.

The instruction fetch unit 103, when activated, sends a
request to the L1 instruction cache 113 to fetch a cache line
from the L1 instruction cache 113 at a specified cache line
address ($ Cache Line). This cache line address can be
derived from the high-order bits of the program counter 111.
The L1 instruction cache 113 services this request (possibly
accessing higher levels of the memory system 101 if missed
in the L1 instruction cache 113), and supplies the requested
cache line to the instruction fetch unit 103. The instruction
fetch unit 103 passes the cache line returned from the L1
instruction cache 113 to the instruction buffer 105 for storage
therein.

The decode stage 107 is configured to decode one or more
instructions stored in the instruction buffer 105. Such decod-
ing generally involves parsing and decoding the bits of the
instruction to determine the type of operation(s) encoded by
the instruction and generate control signals required for
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execution of the operation(s) encoded by the instruction by
the execution/retire logic 109.

The execution/retire logic 109 utilizes the results of the
decode stage 107 to execute the operation(s) encoded by the
instructions. The execution/retire logic 109 can send a load
request to the [L1 data cache 115 to fetch data from the L1
data cache 115 at a specified memory address. The [.1 data
cache 115 services this load request (possibly accessing
higher levels of the memory system 101 if missed in the LL1
data cache 115), and supplies the requested data to the
execution/retire logic 109. The execution/retire logic 109
can also send a store request to the L1 data cache 115 to store
data into the memory system at a specified address. The .1
data cache 115 services this store request by storing such
data at the specified address (which possibly involves over-
writing data stored by the data cache).

The instruction processing stages of the CPU (or Core)
102 can achieve high performance by processing each
instruction and its associated operation(s) as a sequence of
stages each being executable in parallel with the other
stages. Such a technique is called “pipelining.” An instruc-
tion and its associated operation(s) can be processed in five
stages, namely, fetch, decode, issue, execute and retire as
shown in FIG. 2.

In the fetch stage, the instruction fetch unit 103 sends a
request to the L1 instruction cache 113 to fetch a cache line
from the L1 instruction cache 113 at a specified cache line
address ($ Cache Line). The instruction fetch unit 103 passes
the cache line returned from the L1 instruction cache 113 to
the instruction buffer 105 for storage therein.

The decode stage 107 decodes one or more instructions
stored in the instruction buffer 107. Such decoding generally
involves parsing and decoding the bits of the instruction to
determine the type of operation(s) encoded by the instruc-
tion and generating control signals required for execution of
the operation(s) encoded by the instruction by the execution/
retire logic 109.

In the issue stage, one or more operations as decoded by
the decode stage are issued to the execution logic 109 and
begin execution.

In the execute stage, issued operations are executed by the
functional units of the execution/retire logic 109 of the
CPU/Core 102.

In the retire stage, the results of one or more operations
produced by the execution/retire logic 109 are stored by the
CPU/Core 102 as transient result operands for use by one or
more other operations in subsequent issue/execute cycles.

The execution/retire logic 109 includes a number of
functional units (FUs) which perform primitive steps such as
adding two numbers, moving data from the CPU proper to
and from locations outside the CPU such as the memory
hierarchy, and holding operands for later use, all as are well
known in the art. Also within the execution/retire logic 109
is a connection fabric or interconnect network connected to
the FUs so that data produced by a producer (source) FU can
be passed to a consumer (sink) FU for further storage or
operations. The FUs and the interconnect network of the
execution/retire logic 109 are controlled by the executing
program to accomplish the program aims.

During the execution of an operation by the execution
logic 109 in the execution stage, the functional units can
access and/or consume transient operands that have been
stored by the retire stage of the CPU/Core 102. Note that
some operations take longer to finish execution than others.
The duration of execution, in machine cycles, is the execu-
tion latency of an operation. Thus, the retire stage of an
operation can be latency cycles after the issue stage of the
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operation. Note that operations that have issued but not yet
completed execution and retired are “in-flight.” Occasion-
ally, the CPU/Core 102 can stall for a few machine cycles.
Nothing issues or retires during a stall and in-flight opera-
tions remain in-flight.

FIG. 3 is a schematic diagram illustrating the architecture
of an illustrative embodiment of the execution/retire logic
109 of the CPU/Core 102 of FIG. 1 according to the present
disclosure, including a number of functional units 201. The
execution/retire logic 109 also includes a set of operand
storage elements 203 that are operably coupled to the
functional units 201 of the execution/retire logic 109 and
configured to store transient operands that are produced and
referenced by the functional units of the execution/retire
logic 109. An interconnect network 205 provides a physical
data path from the operand storage elements 203 to the
functional units that can possibly consume the operand
stored in the operand storage elements. The interconnect
network 205 can also provide the functionality of a bypass
routing circuit (directly from a producer functional unit to a
consumer function unit).

In one embodiment shown in FIG. 4, the memory hier-
archy of the CPU/Core 102 includes several levels of cache,
such as L1 data cache 115 (for example, with an access time
of three machine cycles) and an L2 instruction/data cache
101A (for example, with an access time of 10 machine
cycles), as well as main memory 101B (for example, with an
access time of 400 machine cycles). Other memory hierar-
chy organizations and access times can also be used. The
functional units of the execution/retire logic 109 includes a
load unit 401 and a store unit 403 as shown. DLOAD
operations are decoded by the decode stage 107 and issued
for execution by the load unit 401, which issues a load
request corresponding to the decoded DLOAD operation to
the .1 Data Cache 115. The address for the load request can
be provided directly from the machine code of the DLOAD
operation. Alternatively, the address for the load request can
be provided from the operand storage (via the interconnect
network 205) at a reference specified by the machine code
of the DLOAD operation. STORE operations are decoded
by the decode stage 107 and issued for execution by the store
unit 403, which issues a store request corresponding to the
decoded STORE operation to the .1 Data Cache 115. The
address for the store request can be provided directly from
the machine code of the STORE operation. Alternatively, the
address for the store request can be provided from the
operand storage (via the interconnect network 205) at a
reference specified by the machine code of the STORE
operation. The operand data for the store request can be
provided from the operand storage (via the interconnect
network 205) at a reference specified by the machine code
of the STORE operation.

The likelihood and duration of load stalls can be reduced
by scheduling the issuance of DLOAD operations as far in
advance of need as possible. For example, if a given
DLOAD operation is issued ten machine cycles early then
there would be no stall even if the DLOAD operation missed
in the L1 data cache 115, so long as it hit in the L2
Instruction/Data Cache 101A. However, if the ten cycle
DLOAD operation does hit in the [.1 data cache 115, then
the value would be available seven machine cycles early and
unnecessarily takes up space in the fast operand storage.
Furthermore, such variability in the time of availability of
the value can lead to issues in referencing the operand
storage memory that is to hold the value for subsequent
operations, particularly where temporal based addressing
such as belt is used for the fast operation storage as
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described in U.S. patent application Ser. No. 14/312,159,
filed on Jun. 23, 2014, herein incorporated by reference in its
entirety. Consequently, any DLOAD operation whose result
can be available early (in a machine cycle prior to a
scheduled machine cycle for its availability) can employ
buffering to hold such results until the scheduled machine
cycle for its availability.

The execution/retire logic 109 supplies this buffering in
the form of retire stations 405, which are hardware units that
are able to hold the address of a DLOAD operation and
possibly buffer the result data as it arrives from the memory
hierarchy. The number of retire stations 405 can vary. Each
retire station 405 is capable of handling one potential
in-flight DLOAD operation. A DLOAD operation contains
arguments that specify a memory address and possibly the
width and scalarity of the desired data. Thus, a DLOAD
operation may request to load a byte from address
0x123456789. The DLOAD operation is decoded and
issued for execution by the load unit 401. When executing
the DLOAD operation, the load unit 401 allocates a retire
station 405 from the available pool of retire stations and
configures the allocated retire station to set a status flag that
indicates expiration of the schedule latency for the given
DLOAD operation. The load unit also sends the station
number of the allocated retire station with the address and
width as part of a load request to the [.1 Data Cache.

The L1 data cache 115 services the load request by
returning all (or part) of the requested data that hits in the L1
data cache 115 to the allocated retire station 405. The station
number of the allocated retire station can be associated with
the returning requested data and can be used to route the
returning requested data to the allocated retire station 405
that is allocated to handle the load request. If the requested
data is not found (misses) in L1 data cache 115, the missing
part(s) of the requested data are requested from the next
level in the memory hierarchy (the L2 instruction/data cache
101A and so on) until it is located and copied back down the
levels of the memory hierarchy to the L1 data cache 115,
which returns the requested data to the allocated retire
station 405. The allocated retire station 405 can buffer the
requested data, if need be, until the status flag indicates that
the schedule latency of the DLLOAD operation has expired.
At this point, the retire station 405 can output the stored
requested data over the interconnect network 205 for storage
in the fast operand storage 203 of the execution/retire logic
109, and then clears its state, and waits to be allocated again
by another DLOAD operation.

The scheduling of the DLOAD operation can be config-
ured such that the DLOAD operation is not issued any fixed
number of machine cycles ahead of need. Instead, the
DLOAD operation can be issued as early as possible (typi-
cally as soon as the address is known) and the need should
be pushed to as late as possible so that the time between
issue and use is as large as possible. If this schedule latency
is bigger than needed and thus avoids a potential load stall
with machine cycles to spare, then the data sits in the retire
station buffer for the extra machine cycles. In the event that
the schedule latency lead is less than needed and thus does
not completely avoid the potential load stall, at least the
duration of the load stall has been reduced by the duration
of the schedule latency.

The instruction set architecture of the computer processor
can permit each DLOAD operation to set its schedule
latency (in machine cycles) as a manifest argument in its
machine code. A scheduled latency of zero of course means
that the data is needed at once because there’s nothing else
to do anyway, and this condition is common enough in
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programs, even after optimization, that the encoding sup-
ports it as a lower entropy special case in the encoding.

It is clearly desirable to have the scheduled latency of the
DLOAD operation as big as possible. To achieve a larger
scheduled latency, an optimizing compiler may hoist (move
to earlier execution) a given DLOAD operation over other
irrelevant code. For example, consider the source code:

a=b*c;

x=%*p+a;

where p is a pointer whose value is to be loaded and
incremented;

a, b and ¢ are operands; and

the multiply (b*c) is executed in four machine cycles.
The naive encoding for using temporal based addressing for
the fast operand storage of the processor is:

MUL (b0, bl); // where b0 is the reference to operand
// storage for a, and bl is the reference
to
// operand storage for b

NOP ( ); /fwaiting for the multiply

NOP ();

NOP ();

DLOAD (0, <*p>); // 0 is the number of machine cycles

// for the scheduled latency of the

// operation, and <*p> is the

// memory address of the pointer,
// <x> is the memory address of the
// result

ADD (b0, b1); STORE (b0, <x>);

Note that the DLOAD operation has a zero scheduled latency, so there will be several stall
machine cycles between the time the results of the DLOAD operation are available and the
ADD operation.

The optimizing compiler can rewrite this as if the source
code had been:

11=*p;
a=b*c;

x=tl+a;

which will encode as:

DLOAD (3, <*p>); MUL (b0, b1);

NOP ();

NOP ();

NOP ():

ADD (b0, bl); STORE (b0, <x>);

The DLOAD operation now has a scheduled latency of
three machine cycles and will avoid a load stall if it hits in
the LI Data Cache (and will lessen the stall if it does not).

The limit that the given DLLOAD operation can be hoisted
can be determined by the availability of the address and the
possibility of read-after-write (commonly RAW) collision.
Clearly a read cannot conclusively issue until the address to
load from is known, although loads can be issued specula-
tively to a predicted address. However, for many DLOAD
operations the address is known statically or far in advance
and the limiting factor is collision. Consider the source code:

y=a*b;

x=%p+y;
where p is a pointer and x and y are in memory.
Whether the DLOAD operation (i.e., *p) can be hoisted
over the store operation and thence over the multiply opera-
tion depends on whether the pointer p points to y. If it does
not then the hoisting is permissible and the loaded value will
be that of whatever p points to in memory. However, if p
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points to y then the DLOAD operation and the previous
STORE operation collide and the DLOAD operation should
return the result of the multiply. Thus, if the DLOAD
operation is hoisted over the STORE operation, it will return
the wrong result. Memory address collisions of this sort and
several other sorts tend to sharply limit the ability of the
optimizer to move code around for better performance, and
in particular its ability to hoist loads.

The execution/retire logic 109 of the CPU/Core 102 can
be configured to avoid such collisions by changing the
ordering semantics of DLOAD operations and STORE
operations. Traditionally every load operation observes and
honors any store operation that precedes it in the instruction
sequence, and need not observe any store operation that
follows it. This rule assumes that any given load operation
and store operation is atomic in time, so an ordering is
unambiguous. However, the DLOAD operation as described
herein introduces a specifiable scheduled latency, the
DLOAD operation actually has two meaningful times: when
it issues, and when it retires. For this case, the semantics of
the DLOAD operation requires that the value loaded reflect
the state of memory as of the retire time, not as of the issue
time. Consequently, the DLOAD operations observes all
STORE operations that execute before it retires, including
those STORE operations that issue after it does.

Consequently, the collision example can be safely
encoded as:

DLOAD (3, <*p>); MUL (b0, bl);

NOP ();

NOP ();

STORE (b0, <y>);

ADD (b0, bl); STORE (b0, <x>);

Clearly if p does not point at y then the hoist is safe.
However, if p does point at y then the store operation to y
(i.e., STORE (b0, <y>)) overrides the value loaded from the
cache and is returned as the result of the load. The hoisted
DLOAD operation and its cache access is thus wasted but
harmless.

For this to work, the in-flight DLOAD operations must be
made aware of (potentially) colliding STORE operations
that take place between the issue cycle for the DLOAD
operation and the retire cycle for the DLOAD operation.
This can be implemented by configuring the retire stations
405 to collectively monitor (or snoop on) the address and
data signals (e.g., address and data bus signals) used to
communicate the store requests to the [.1 data cache 115.
Each active retire station 405 can be configured to compare
the address argument of the store request to the address of
its own in-flight DLOAD operation. If there is a (partial or
complete) match, the data being stored is copied into the
buffer of the retire station and marked as having come from
an intervening STORE operation. Thereafter any data
returned from a previously issued load request that arrives
from the L1 data cache 115 will be discarded rather than
buffered in the retire station 405. Two or more colliding
stores each replace the data from the previous STORE
operation so the buffer of the retire station always reflects the
most recent collision. The data buffered by the retire station
405 is output over the interconnect network 205 to the fast
operand storage 203 of the execution/retire logic 109 at the
expiration of the scheduled latency as described above.

Note that the DLOAD operations and STORE operations
can collide only in part, if the addressed memory of each
only partly overlaps. Consequently, the collision logic of the
retire station must be present for each byte in the buffer of
the retire station. Thus, the final retire value output to the fast
operand storage of the processor at the expiration of the
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scheduled latency may be an amalgam of bytes from the
issued DLOAD operation and one or more colliding STORE
operations. However, it will always reflect the state of
memory as it is at retire time.

FIG. 5A-5C, collectively, is a flow chart that illustrates
exemplary operations carried out by the computer processor
of FIGS. 1 and 4 in processing a given DLOAD operation
in accordance with the present disclosure. In block 501, the
operations being where the given DLOAD operation is
decoded by the decode stage 107 of the CPU/Core 102. In
block 503, the given DLOAD operation is issued for execu-
tion by the load unit 401.

In block 505, the load unit 401 begins execution of the
given DLOAD operation by allocating a retire station from
the available pool of retire stations and configuring the
allocated retire station to set a status flag that indicates
expiration of the schedule latency for the given DLOAD
operation. Such configuration can involve the load unit 401
loading parameter data into the allocated retire station where
such parameter data specifies the schedule latency for the
given DLOAD operation.

In block 507, the load unit 401 generates a load request
and communicates such load request to the [.1 data cache
115. The load request includes the station number of the
allocated retire station along with the address and width of
the requested data.

The operations then continue to carry out two processing
paths (blocks 509/511/513 and blocks 515/517/519) in par-
allel with one another.

In block 509, the retire station monitors the results bus
carrying the result data returned by the L1 data cache 115.
The station number of the allocated retire station can be
associated with the returning requested data and can be used
to route the returning requested data to the allocated retire
station 405 that is allocated to handle the load request.

In block 511, the retire station determines whether the
result data returned by the L1 data cache 115 as dictated by
the monitoring of block 509 corresponds to the in-flight load
request for the given DLOAD operation handled by the
retire station. If so, the operations continue to block 513
where the retire station buffers such result data returned by
the [.1 data cache 115. Otherwise, the operations continue to
block 521 as described below.

In block 515, the retire station monitors (or snoops on) the
address and data signals (e.g., address and data bus signals)
used to communicate the store requests from the store unit
403 to the L1 data cache 115. In this block 515, the retire
station can be configured to compare the address argument
of the store request to the address of the in-flight DLOAD
operation that it is handling.

In block 517, the retire station determines whether there
is a store request with a matching or overlapping address as
dictated by the monitoring of block 515. If so, the operations
continue to block 519 where the retire station discards any
buffered result data and buffers the store request data.
Furthermore, the retire station marks buffered data as having
come from an intervening STORE operation and is config-
ured to discard any further data returned from a previously
issued load request. The operations then continue to block
521. If in block 517, the retire station determines that there
is no store request with a matching or overlapping address
as dictated by the monitoring of block 515, the operations
bypass block 519 and continue to block 512.

In block 521, the retire station checks the status flag that
indicates that the schedule latency has expired.

In block 523, the retire station determines whether the
status flag checked in block 521 is set and thereby indicates
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that the schedule latency has expired. If not, the operations
return back to the two parallel processing paths of blocks
509/511/513 and blocks 515/517/519 as described above.
This path corresponds to the case where the schedule latency
of the given DLOAD operation has not yet expired (irre-
spective of the execution latency of the given DLOAD
operation. If in block 523 the retire station determines that
the status flag checked in block 521 is set and thereby
indicates that the schedule latency has expired, the opera-
tions continue to block 525.

In block 525, the retire station determines whether all
result data for the DLOAD operation has been received and
thereby indicates that the execution latency has expired. If
not, the operations continues to block 527 where the retire
station stalls the operation of the execution/retire logic 109
of the CPU/Core 102. This path corresponds to the case
where the schedule latency of the given DLOAD operation
has expired but the execution latency of the given DLOAD
operation has not yet expired. The operations then continue
to the path of blocks 509 to 513. In this case, the stall
operations of the CPU/Core 102 can continue until the all
result data for the given DLOAD operation has been
returned from the .1 data cache 115. In one embodiment, in
the event that the machine stalls waiting for the expiration of
the execution latency, both the issuance and retire stages of
execution can stall with only truly asynchronous activity,
such as in-flight loads and stores, continuing.

If in block 525 the retire station determines that all result
data for the given DLOAD operation has been received and
thereby indicates that the execution latency has expired, the
operations continue to block 529. This path corresponds to
the case where both the schedule latency of the given
DLOAD operation and the execution latency of the given
DLOAD operation has expired.

In block 529, the retire station retires the buffer data by
outputting the stored data over the interconnect network 205
for storage in the fast operand storage 203 of the execution/
retire logic 109. Note that the final retire value output to the
fast operand storage of the execution/retire logic 109 at the
expiration of the scheduled latency may be an amalgam of
bytes from the issued DLOAD operation and one or more
colliding STORE operations. However, it will always reflect
the state of memory as it is at retire time.

The operations continue to block 531 where the retire
station is de-allocated and clears its state and waits to be
allocated again by another DLOAD operation.

FIG. 6 is a flow chart that illustrates exemplary operations
carried out by the load unit and retire station of the computer
processor of FIGS. 1 and 4 in processing a given DLOAD
operation with a schedule latency specified by a machine
cycle count included in the machine code of the DLOAD
operation. In block 601, the load unit 401 loads parameter
data that specifies this machine cycle count into the retire
station allocated to handle the given DLOAD operation.

In block 603, the retire station uses the parameter data to
configure a count-down timer for the number of machine
cycles specified by the parameter data.

In block 605, the count-down timer is decremented for
each machine cycle.

In block 607, the retire station checks the current value of
the count-down timer.

In block 609, the retire station determines whether the
value of the count-down checked in block 607 is zero and
thus indicates that the count-down timer has expired. If not,
the operations returns to block 607 in order to wait until the
count-down timer has expired. If so, the operations contin-
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ues to block 611 where the retire station sets a status flag to
indicate the schedule latency has expired.

FIG. 7 is a flow chart that illustrates exemplary operations
carried out by the load unit and retire station of the computer
processor of FIGS. 1 and 4 in processing a given DLOAD
operation with a schedule latency specified by a statically-
assigned operation identifier included in the machine code of
the given DLOAD operation.

In block 701, the load unit 401 loads parameter data that
specifies this a statically-assigned operation identifier into
the retire station allocated to handle the given DLOAD
operation.

In block 703, the retire station allocated to handle the
given DLOAD operation is configured to wait for a signal
including the statically-assigned operation identifier for the
schedule latency.

In block 705, the decode stage of the CPU/Core 102
decodes a PICKUP operation whose machine code includes
the same statically-assigned operation identifier for the
schedule latency of the given DLOAD operation, which is
issued to the load unit 401 in block 707.

In block 709, the load unit 401 executes the PICKUP
operation, which involves sending a signal to the active
retire stations where such signal includes the statically-
assigned operation identifier for the schedule latency of the
given DLOAD operation.

In block 711, the retire station allocated to handle the
given DLOAD operation waits to receive the signal that
includes the statically-assigned operation identifier for the
schedule latency of the given DLOAD operation as com-
municated from the load unit 401. When the signal is
received, the operations continue to block 713 where the
retire station sets a status flag to indicate the schedule
latency has expired.

The semantics of the DLOAD operation can also be
defined for CALL operations and interrupts and traps. The
CALL operation is an operation (or sequence of operations)
within an instruction sequence (referred to as the Caller) that
directs execution to a specified subroutine or function frame
activation (referred to as the Callee). The function frame
activation is an active instance of a subroutine or function
which has not yet terminated with a RETURN operation.
The RETURN operation within the Callee directs execution
back to the Caller. Nested CALL and RETURN operations
can be used to encapsulate one function frame activation
within another. The semantics of the CALL operation can be
embodied in a single operation or possibly be broken up into
a stereotyped sequence of operations. Both cases are referred
to as a CALL operation herein. Similarly, the semantics of
the RETURN operation can be embodied in a single opera-
tion or possibly be broken up into a stereotyped sequence of
operations. Both cases are referred to as a RETURN opera-
tion herein.

Note the processing of the CALL and RETURN opera-
tions can occur in a nested manner when the program code
includes nested CALL operations. Furthermore, the same
processing of the CALL operation is carried out in the event
that an interrupt or trap occurs, which can be treated as an
involuntary CALL operation. After the interrupt or trap has
been handled, the operations perform a RETURN operation
that restores the processor context.

Specifically, the semantics of the DLOAD operation can
be defined to address the scenario where a CALL operation
occurs within the schedule latency of a DLOAD operation.
The schedule latency may be defined to include the period
executed within a function frame activation, or to exclude it.
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In one embodiment, the period executed within the func-
tion frame activation (or possibly within nested function
frame activations) can be excluded from the schedule
latency. In this case, the processing of any cycle-count type
of DLOAD operation (e.g., FIG. 6) of the Caller is config-
ured such that the count-down timer for the DLOAD opera-
tion of the Caller does not count down during the period
executed within a function frame activation. Furthermore,
the processing of any pickup-type of DLOAD operation
(e.g., FIG. 7) of the Caller is configured such the PICKUP
operation (and possibly a corresponding “refuse” operation)
for the pickup-type DLOAD operation of the Caller is
ignored. Note that the namespace of the statically-assigned
operation identifiers for the pickup-type DLOAD operations
and PICKUP operations and “refuse” operations can be
defined as global to the machine, or local to a thread,
process, or function frame.

In another embodiment, the period executed within the
function frame activation (or possibly within nested function
frame activations) can be included in the schedule latency.
In this case, the processing of any cycle-count type of
DLOAD operation (e.g., FIG. 6) of the Caller is configured
such that the count-down timer for the DLOAD operation of
the Caller continues to count down during the period
executed within a function frame activation. Furthermore,
the processing of any pickup-type of DLOAD operation
(e.g., FIG. 7) of the Caller is configured such the PICKUP
operation (and possibly a corresponding “refuse” operation)
for the pickup-type DLOAD operation of the Caller is
honored. In this case, it is possible for a cycle-counted type
of DLOAD operation that was issued in a Caller to retire in
the Callee. It also becomes possible for a pickup deferred
operation issued in the caller to be picked up (or refused) in
the Callee (in this case, the Caller and Callee must share a
deferred operation identifier namespace). It is also possible
to define cycle-counted type DLOAD operations as inclu-
sive (where the period executed within the function frame
activation is included in the schedule latency) while pickup-
type DLOAD operations are exclusive (where the period
executed within the function frame activation is excluded
from the schedule latency), and vice versa.

Because the occurrence of an interrupt or trap is generally
unpredictable by the program, inclusive deferral (where the
period executed within the function frame activation is
included in the schedule latency) can be impractical by
design. That is, deferrals must generally be saved and
restored over such events. However, it is possible for the
machine to use exclusive deferrals (where the period
executed within the function frame activation is excluded
from the schedule latency) for interrupts and traps while
using inclusive deferrals where the period executed within
the function frame activation is included in the schedule
latency) for explicit CALL operations.

The semantics of the DLOAD operation can also be
defined to address the scenario where a DLOAD operation
issued as part of a function frame activation is inflight at the
time the RETURN operation is executed.

In one embodiment, the inflight DLLOAD operation issued
in the function frame activation can retire in the Caller after
the intervening RETURN operation.

In another embodiment, the RETURN operation can be
treated as an implicit refuse of the inflight DLOAD opera-
tion such that the inflight DLOAD operation is discarded.

In the case of exclusive deferral of DLOAD operations
(where the period executed within the function frame acti-
vation is excluded from the schedule latency), the execution/
retire logic 100 can be configured to save the state of
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pending inflight DLOAD operations over the intervening
CALL operation. However, the CALL operation itself may
issue its own deferred operations, and its calls recursively.
Consequently the number of potentially outstanding in-flight
deferred DLOAD operations is unbounded. However, the
number of potentially outstanding deferred DLOAD opera-
tions in any one function frame activation is bounded, by the
size of the identifier namespace for pickup-type DLOAD
operations, and by the maximum expressible cycle count in
cycle-counted type DLOAD operations. Consequently a
natural implementation of exclusive deferred operation
semantics is for the CALL operation (or sequence) to save
the state of pending in-flight DLOAD operation in the stack
frame as is done with other per-function processor state
information, and for the return operation (or sequence) to
restore it. The execution logic 109 of the CPU/Core 102 can
employ dedicated memory to store a copy of such processor
state information as needed. The dedicated memory can be
part of a memory circuit internal to the CPU/Core 102, such
as scratchpad memory as described in U.S. patent applica-
tion Ser. No. 14/311,988, filed on Jun. 23, 2014, herein
incorporated by reference in its entirety. The dedicated
memory can also be part of the memory hierarchy (cache
memory/main memory) of the CPU/Core 102 or other
suitable memory circuit. The save and restore logic can be
realized by a hardware engine (spiller unit) that is configured
to save and restore processor context across subroutine or
functional calls as described in U.S. patent application Ser.
No. 14/311,988. The save and restore logic that saves and
restores the processor state information can operate accord-
ing to a “reissue model” where any pending inflight DLOAD
operation is aborted and the results (if any) are discarded,
and only the DLOAD operation and its arguments are saved.
At the restore time triggered by the RETURN operation, the
DLOAD operation is then reissued either immediately or in
any case no later than the retire step, and the new results are
retired. In the case of inclusive deferral of DLOAD opera-
tions (where the period executed within the function frame
activation is included in the schedule latency), the save and
restore logic can operate according to a “completion model”
where any pending in-flight DLOAD operation is permitted
to complete execution and the result is saved and later
restored at the retire step. Of these two models, the comple-
tion model is more natural when the ordering is by issue
step, while the reissue model is more natural when ordering
is by retire step. However, it will be evident that these are
independent design choices, and indeed a hybrid approach in
which completions are saved if available and buffer capacity
for them exists, and while operations are saved and reissued
otherwise.

There have been described and illustrated herein several
embodiments of a computer processor and corresponding
method of operations. While particular embodiments of the
invention have been described, it is not intended that the
invention be limited thereto, as it is intended that the
invention be as broad in scope as the art will allow and that
the specification be read likewise. For example, the micro-
architecture and memory organization of the CPU 101 as
described herein is for illustrative purposes only. A wide
variety of CPU microarchitectures can embody the improve-
ment and methods described herein, including microarchi-
tectures that employ in-order execution, microarchitectures
that employ out-of-order execution, superscalar microarchi-
tectures, VLIW microarchitectures, single-core microarchi-
tectures, multi-core microarchitectures, and combinations
thereof. In another example, the functionality of the CPU
101 as described herein can be embodied as a processor core
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and multiple instances of the processor core can be fabri-
cated as part of a single integrated circuit (possibly along
with other structures). It will therefore be appreciated by
those skilled in the art that yet other modifications could be
made to the provided invention without deviating from its
spirit and scope as claimed.
What is claimed is:
1. A computer processor comprising:
execution logic including at least one functional unit and
operand storage that stores data that is produced and
consumed by the at least one functional unit;
wherein the at least one functional unit is configured to
execute a deferred operation whose execution produces
result data; and
wherein the execution logic further includes a retire
station that is configured to store and retire the result
data of the deferred operation in order to store such
result data in the operand storage, wherein the retire of
such result data occurs at a machine cycle following
issue of the deferred operation as controlled by stati-
cally-assigned parameter data included in the encoding
of the deferred operation.
2. The computer processor according to claim 1, wherein:
the statically-assigned parameter data defines schedule
latency for the deferred operation and the execution of
the deferred operation defines an execution latency.
3. The computer processor according to claim 2, wherein:
in the event that the execution latency expires before the
schedule latency, the retire station is configured to
buffer the result data for at least one machine cycle
following the expiration of the execution latency.
4. The computer processor according to claim 2, wherein:
in the event that the schedule latency expires before the
execution latency, the retire station is configured to
control the execution logic to stall for at least one
machine cycle following the expiration of the schedule
latency.
5. The computer processor according to claim 2, wherein:
in the event that a call operation occurs within the
schedule latency of the deferred operation, the schedule
latency is defined to include a time period executed
within the callee of the call operation.
6. The computer processor according to claim 2, wherein:
in the event that a call operation occurs within the
schedule latency of the deferred operation, the schedule
latency is defined to exclude a time period executed
within the callee of the call operation.
7. The computer processor according to claim 6, wherein:
the execution logic is configured to discard any result data
stored by the retire station in conjunction with process-
ing the call operation.
8. The computer processor according to claim 6, wherein:
the execution logic further includes logic that saves data
pertaining to the deferred operation and uses the saved
data to reissue the deferred operation in response to
returning from the callee of the call operation.
9. The computer processor according to claim 1, wherein:
the statically-assigned parameter data represents a num-
ber of machine cycles between issue of the deferred
operation and retiring the result data produced by
execution of the deferred operation under the assump-
tion that such result data is available at the time of
retiring.
10. The computer processor according to claim 9,
wherein:
the statically-assigned parameter data is used to configure
a count-down timer whose output is used to dictate the
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machine cycle in which the result data produced by
execution of the deferred operation is retired.

11. The computer processor according to claim 1,

wherein:

the statically-assigned parameter data represents an
operational identifier that is used by a corresponding
pickup operation whose execution dictates the machine
cycle in which the result data produced by execution of
the deferred operation is retired.

12. The computer processor according to claim 1,

wherein:

the deferred operation comprises a deferred load opera-
tion that is executed by a load unit.

13. The computer processor according to claim 12,

wherein:

a retire station is allocated from a pool of retire stations
such that the allocated retire station stores result data
produced by the execution of the deferred load opera-
tion.

14. The computer processor according to claim 12,

wherein:

the execution of the deferred load operation by the load
unit involves generating a load request for communi-
cation to a hierarchical memory system.

15. The computer processor according to claim 14,

wherein:

the retire station is configured to monitor intervening store
requests communicated to the hierarchical memory
system in order to determine if the address data of such
intervening store requests overlap with the address of
the deferred load operation handled by the retire sta-
tion, and if so stores the data of the store request for
retirement to the operand storage of the execution
logic.

16. A method of operating a computer processor com-

prising:

configuring at least one functional unit to execute a
deferred operation whose execution produces result
data; and

configuring a retire station to store and retire the result
data of the deferred operation in order to store such
result data in operand storage of the computer proces-
sor, wherein the retire of such result data occurs at a
machine cycle following issue of the deferred operation
as controlled by statically-assigned parameter data
included in the encoding of the deferred operation.

17. The method according to claim 16, wherein:

the statically-assigned parameter data defines schedule
latency for the deferred operation and the execution of
the deferred operation defines an execution latency.

18. The method according to claim 17, further compris-

ing:

in the event that the execution latency expires before the
schedule latency, configuring the retire station to buffer
the result data for at least one machine cycle following
the expiration of the execution latency.

19. The method according to claim 17, further compris-

ing:

in the event that the schedule latency expires before the
execution latency, configuring the retire station to con-
trol the execution logic to stall for at least one machine
cycle following the expiration of the schedule latency.

20. The method according to claim 16, wherein:

the statically-assigned parameter data represents a num-
ber of machine cycles between issue of the deferred
operation and retiring the result data produced by
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execution of the deferred operation under the assump-
tion that such result data is available at the time of
retiring.

21. The method according to claim 20, further compris-

ing:

using the statically-assigned parameter data to configure a
count-down timer whose output is used to dictate the
machine cycle in which the result data produced by
execution of the deferred operation is retired.

22. The method according to claim 16, wherein:

the statically-assigned parameter data represents an
operational identifier that is used by a corresponding
pickup operation whose execution dictates the machine
cycle in which the result data produced by execution of
the deferred operation is retired.

23. A computer processor comprising:

execution logic and at least one cache memory integrated
as part of an integrated circuit;
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wherein the execution logic includes at least one func-

tional unit and operand storage that stores data that is
produced and consumed by the at least one functional
unit, wherein the at least one functional unit includes a
load unit configured to execute a deferred load opera-
tion whose execution communicates with the least one
cache memory to retrieve result data therefrom, and the
execution logic further includes a retire station that is
configured to store and retire the result data of the
deferred load operation in order to store such result data
in the operand storage, wherein the retire of such result
data occurs at a machine cycle following issue of the
deferred load operation as controlled by statically-
assigned parameter data included in the encoding of the
deferred load operation.
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