US009513920B2

a2 United States Patent
Godard et al.

US 9,513,920 B2
Dec. 6, 2016

(10) Patent No.:
45) Date of Patent:

(54) COMPUTER PROCESSOR EMPLOYING (56) References Cited
SPLIT-STREAM ENCODING
U.S. PATENT DOCUMENTS
(71) Applicant: Mill ComPUting’ Inc" Palo Alto’ CA 5’592’679 A * 1/1997 Yung """"""""""" G06F 9/3836
Us) 71/117
5,604,877 A 2/1997 Hoyt et al.
(72) Inventors: Roger Rawson Godard, East Palo (Continuztd)
Alto, CA (US); Arthur David Kahlich,
%unilygaleklctA ([éi);(gg)vid Arthur OTHER PUBLICATIONS
ost, Los Altos,
Decoupled Access/Execute Computer Architectures, James E
(73) Assignee: MILL COMPUTING, INC., Palo Alto, Smith, 0149-7111/82/0000/0112$00.75 © 1982 IEEE, pp. 112-119.
CA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Dame.:l Pan
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Gordon & Jacobson,
U.S.C. 154(b) by 288 days. PC.
57 ABSTRACT
(21)  Appl. No.: 14/290,108 A computer processor is operably coupled to a memory
system. The memory system is configured to store instruc-
(22) Filed: May 29, 2014 tion blocks, wherein each instruction block is associated
with an entry address and multiple distinct instruction
(65) Prior Publication Data streams within the instruction block. The multiple distinct
US 2015/0347130 Al Dec. 3. 2015 instruction streams include at least a first instruction stream
’ and a second instruction stream. The first instruction stream
has an instruction order that logically extends in a direction
(31) Int. Cl. of increasing memory space relative to the entry address of
GOGF 9722 (2006.01) the instruction block. The second instruction stream has an
GOGF 9/30 (2006.01) instruction order that logically extends in a direction of
(Continued) decreasing memory space relative to the entry address of the
(52) US. CL instruction block. The computer processor includes a num-
CPC ....ccoee. GO6F 9/321 (2013.01); GO6F 9/3802 ber of multi-stage instruction processing components corre-
(2013.01); GO6F 9/3814 (2013.01); sponding to the multiple distinct instruction streams within
(Continued) each instruction block. The number of multi-stage instruc-
(58) Field of Classification Search tion processing components are configured to access and

CPC GOGF 9/321; GOGF 9/3802; GOGF 9/3814;
GOGF 9/3851; GOGF 9/3889; GOGF
9/3836; GOGF 9/324

See application file for complete search history.

process in parallel instructions belonging to multiple distinct
instruction streams of a particular instruction block stored in
the memory system.

30 Claims, 6 Drawing Sheets

0o
p

Mermory System (BBs/EBBs —
each with a number of stream 1
instructions and a number of
stream ]l instructions)

CPU/Core

( o1

| I T I3 I
| L1 Cache | [ L1 Cache Il 5% {
1 (Cache Lines with BB/ | | i {Cache Lines with |
[ EBB portions) [ i BB/EBB portions) :
| | |

d pA I P55 5 Gacke el
: $ Cache_Lin= Instruction Fetch | : ion Fetch 1
I untl___ T+ unit 1 !
| ! T T ! i
| i i |
| I W l 77 |
| instruction Buffer | } i Instruction Buffer 1 |
| (Cache Line(s) with | | 1] (Cache Line(s) with 1
1 o straam ! instruction) | | stream |l instruction) 3% i
1 W | i 3 1
! Vo 1 | o !
| Program ] | Program [
1 | Counter | (o Decode Stage | i \ Decode Stage I Counter Il {t

— (decode stream | (decode stream |1 —

! stream [ instruction} ! 1 instruction) {for stream |1 |
(] i | i instructions) ||
| l A : ! l s ;
| |

i Execution Logic | | i Execution Logic Il i
1 (execute stream | I 1 (executs stream §i l
| operations) | i operations |
1 i | |
| e e e e e e e ] ) e e e e e e |

N 2




US 9,513,920 B2

Page 2
(51) Int. CL 2007/0101101 Al* 5/2007 Odahara ............. GO6F 9/30149
GOGF 9/40 (2006.01) 2009/0235051 Al* 9/2009 Codr GO6F ;/1320%é8
GO6F 9/445 (2006.01) OAUESEU e 7121205
GOOF 9/32 (2006.01) 2012/0173772 Al* 72012 Durand ...cc.co.c...... GOGF 13/28
GOG6F 9/38 (2006.01) 710/22
(52) US. CL
CPC ......... GOG6F 9/3836 (2013.01); GOGF 9/3851 OTHER PUBLICATIONS
(2013.01); GO6F 9/3889 (2013.01); GO6F ) ) o
9/324 (2013.01) The Heads and Tails Instruction Format, Heidi Pan and Krste
’ Asanovic, MIT Laboratory for Computer Science, Mar. 2003, pp.
(56) References Cited 131-132.

U.S. PATENT DOCUMENTS

6,304,962 Bl  10/2001 Nair
2002/0087900 Al*  7/2002 Homewood ......... GO6F 1/3203
713/320
2004/0199732 Al* 10/2004 Kelley ................. GOG6F 9/3814
711/158
2006/0026577 Al* 2/2006 Dinechin ............... GO6F 8/65
717/148

Heads and Tails: A Variable-Length Instruction Format Supporting
Parallel Fetch and Decode, Heidi Pan and Krste Asanovic,
Cases’01, Nov. 16-17, 2001, ACM 1581133995/01/0011.
Software Pipelining and Superblock Scheduling: Compilation Tech-
niques for VLIW Machines, Meng Lee et al., computer Systems
Laboratory, HPL-92-78, Jun. 1992.

Sound and Vision: A Technical Overview of the Emotion Engine,
Jon Stokes, Feb. 16, 2000.

* cited by examiner



U.S. Patent

Dec. 6, 2016 Sheet 1 of 6 US 9,513,920 B2
Memory ~ Increasing Address Space
' D
Stream |1 Stream Il Stream I Optional Streamn ! Stream { Stream | Stream |
instruction 3 instruction 2 instruction 1 %lofk instruction 1 instruction 2 instruction 3 instruction 4
ata
) Instruction Order T Instruction Order .
Entry Point
K\\\\~ BB or
EBB
FIG. 1
Memory — Increasing Address Space
| >
BB or
EBB 1
v
BB or EBB
2
BB or
EBB 3

BB or
EBB 4

FIG. 2




U.S. Patent

Dec. 6, 2016

Sheet 2 of 6

o
2

Memory System (BBs/EBBs —
each with a number of stream 1

US 9,513,920 B2

WA
7

Program
Counter | (for
stream |
instructions)

tnstruction Buffer |
(Cache Line(s) with
stream | instruction)

i

<—

Decode Stage |
(decode stream |
instruction)

v A

Execution Logic |
(execute stream |
operations)

Instruction Buffer 1
(Cache Line(s) with
stream Il instruction)

i|77|ﬂ7

A4

P 7%

Decode Stage |l
(decode stream Il

)

Program
Counter il

A

P

Execution Logic Hl
(execute stream |1
aperations

i
|
|
|
|
|
|
I
I
: instruction)
!
I
I
i
|
|

(for stream Il
instructions)

instructions and a number of CPU/Core
stream |l instructions) JO|
T T === Ll moommm e e l
1oh y I !’ |
L1 Cache | | l L1 Cache ll [15i% |
(Cache Lines with BB/ | | | (Cache Lines with I
EBB portions) [ | BB/EBB partions) I
3 ! | y !
$ Cache_Lin DL | L Cache Line,
> Jache_Lne Instruction Fetch | 4
. ! Instruction Fetch
— Unit | : <
_____ _ﬂ_I_Jb:g ___Unitl
v /10’7% v /lb{ﬁz

FIG. 3




U.S. Patent Dec. 6, 2016 Sheet 3 of 6 US 9,513,920 B2

LB A0
L1 Cachel |~ 1o /
Memor
. /S " Y Instruction Fetch Unit |
Entry signal ystem / 057

1 1
i 1
I 1
1 dominant? |——3 o :
S Cache_Line : Fetch /l’%/? i
5 >> drive? i
! Cache Line to !
i E stream Il side !
! /L/o’?’ﬂ Cache Line E
i Py s / frgm stream |l E
E b fetch/ slae E
! other I 1
b e e e _L _________________________________ 0
Instruction /jo?ﬂr
Buffer |
- is enabled iff entry signal is set and
dominant . ) .
the load balancingscheme activatesthe stream | side
drive is enabled iff dominantis set
select selects fetch iff dominantis set or entry signal is not set
fetch/other selects other iff entry signal is set and dominantis not set

Instruc‘:on is enabled iff dominantis set or entry signalis not set
Fetc

FIG. 4



US 9,513,920 B2

Sheet 4 of 6

Dec. 6, 2016

U.S. Patent

<

ddd

g 'Old

o4 Anu3g

JapiQO uononisu|

!

JapiQ uononysuj

>

$ uofonIsul
| weansg

€ uononAsul
| weang

Z uononisul
| weang

| uononnsul
| weang

(a}s)]
eleq
¥ooig

| uononysul
Il weang

7 uononisul
| Weang

£ uoponAsUl
I} weang

<

ooedg ssaippy Buiseaiou| — Alows)y



U.S. Patent Dec. 6, 2016 Sheet 5 of 6 US 9,513,920 B2

e
supply the cache line address ($ Cache_Line) to the instruction fetch

block 401A
PRy ]
0z
v b

supply entry signal to the instruction fetch block 401A and to the contral circuit 403A; when sef,
the entry signal indicates that the cache line address supplied to the instruction fetch block
401A includes an entry point into an instruction block

bog

entry signal
set?

YES

Y ;
v O (04
Control circuit 403A generates
dominant signal based on a

predefined load balancing policy

Cache line counter
overflow based on value
qof BD-| of Block Data?

YES

({6
) v

disable fetch operations as
well as operations of
decode stage | for next
stream | instruction

bl

A 4
selectively enable the instruction fetch block 401A based on the dominant signal and the entry

signal; if the instruction fetch block 401A is enabled, then the instruction fetch block 401A uses the
supplied $Cache_line to fetch the cache line from the L1 instruction cache 115A

Il &

If the dominant signal is set, then configure the drive circuitry 405A to pass the cache line retrieved
from the L1 instruction cache 115A and supplied by the instruction fetch block 401A to the select
fetch/other circuitry for the Stream |i side (for supply to Instruction Buffer 1078

v bis

If the dominant signal is set or the entry signal is not set, then configure the select fetch/other
circuitry 407A to perform “select fetch” mode where the cache line retrieved from the L1 instruction
cache 115A and supplied by the instruction fetch block 401A is passed to the Instruction Buffer 107A

v Lt

If the dominant signal is not set and the entry signal is set, then configure the select fetch/other
circuitry 407A for the “select other” mode where the cache line supplied by the drive circuit for the
stream |l side is received and passed to the Instruction Buffer 107A

] 04

Instruction Buffer 107A stores the cache line passed by the select fetch/other circuitry 407A

END
FIG. 6



US 9,513,920 B2

Sheet 6 of 6

Dec. 6, 2016

U.S. Patent

L°9ld

(1] Wweans uoRanisul
JO % UojoNASY JO
suopeiado einoexs)
a1noaxg

(1 weans
UOJONIISU) O ¢
uofjonaisu; epooap)
apooeQ

(ji weans uoponisuy
10 ¥ uogonnsuy 1)
12 snoinalid yoyey)

Usjed

(1) weans uopanisu)
JO { uononisui

Joj aul 10 yoey)
yoje4

(} weans uononisuyy
. 4O ¥ UoRONASUL JO
suonelsdo snoexs)
Eilglecyes

(j weans
UOnRonAIsul Jo ¢
UOlOnisul 9pooap)
apooag

(1 weans uogonysul
10 { uogonisul

10j 710 Xeu yajay)
Uoed

(1 weans uoponasul
o ¥ uononisu

10} 10 yojay)

yned

(1} weans uoonisyy
10 ¢ uopongsu; jo
suojjesedo snoexa)
9Jnoexg

(1 weans
UoJoNgsul o ¢
uopjonJisul apoaap)
8pooa(

(1] weans uoponisu
10 £ uononiisu oy
112 snoiaald yosy)

yoie4

(1] weaJys uononnsuy
10 ¢ uogonnsu;

Jof syl 19 Y238l
yoye

(1 weasns uopnonijsul
1O € uoponsul Jo
suofjeiada snoaxs)
ajnoaxg |

(j weans
uopongsul o ¢
uononsy apodap)
|pooa(]

(] weans uogonJsul
1O ¢ uojjonuisut

10§ 10 1xau yojay)
yored

(1 weans uogonysuy
10 € uoonAsul

o} 10 yoiey)

Yolo4

(1f weens uoponIsU
10 Z uogonysu Jo
suopelado sjnoexa)
anoaxg

(| weans
UoNONNSUl 0 7
LOoNoNIsuU| apooap)
apooaQd

(1} weans

10 2 uoponysui 1o}
10 snoinaid yoiay)
yale

(1] weans uononysul
JO 7 uononasul
10470 yoiay)

yaied

(I weais uogonysul
10 Z uoponasu; 1o
suopelado anosxa)
anoaxgy

( weans
uoponsul Jo Z
uononisut epooap)
apooa(]

(] weans

10 Z uononasul
1o} 10 au yojey)
uojed

(1 wesans uogonygsul
4O g uoponaisut

104 1D yoay)

yozed

(1] weans uonanisul
Jo | uonanasul jo
suopesado 91noaxa)
ajnoaxg

(Il weahs
uoponsul Jo L
uolonasu; sapasep)
apooa(

(Il wesys
uolonAsU 104

1D snowaid yoiey)
yoia

(| weans uoponysul
10 | uononysul Jo
suojjelado ginoexa)
9Inoexy

(I weans
uofonasul 4o |
UDJjoNgsuy apooap)
apoo3q

(1 weags uogonysul
10} 70 Xeu ymey) |
yoe4

{(ag=yaq

ojui ssaippe Ajua
01 Buipuodsanion
10 yosey)

Yoed




US 9,513,920 B2

1

COMPUTER PROCESSOR EMPLOYING
SPLIT-STREAM ENCODING

BACKGROUND OF THE INVENTION

1. Field

The present application relates to computer processors.

2. Related Art

A computer processor (or central processing unit or CPU)
executes a sequence of instructions, typically obtained from
main memory, which are executed in positional order except
when redirected by a branch, jump, call, or similar control-
flow operation (hereinafter “control-flow operation™). The
order is important because there are often semantic depen-
dencies among instructions in a sequence, and the machine
state would be different if the instructions were executed in
a different order. However, some sequences of instructions
do not have to be issued in strict order. An important class
of CPU so-called “wide issue” architectures can issue more
than one instruction simultaneously.

Multi-threading, a common approach to parallel execu-
tion, specifies the program not as a single sequential stream
of instructions, but as several such streams. Each stream
may be executed by its own sub-CPU or pipeline, or the
streams may be interleaved on a single CPU such that each
uses resources left idle by the other streams. Sequential
semantics are enforced within any single stream of instruc-
tions, but the streams themselves are considered to be
independent, meaning that the execution order of instruc-
tions in one stream vs instructions in another stream doesn’t
matter except for certain specialized instructions that serve
to synchronize the streams.

In another approach, typified by Very Long Instruction
Word (VLIW) architectures, there is only one instruction
stream, but each instruction may contain not just one, but
several “operations”, and all of these operations are executed
simultaneously. The several operations within a single
instruction are synchronized at every instruction issue cycle
and thus advance in lock step. Thus, a given operation
executed in a given instruction may be semantically depen-
dent on any operation executed earlier, and operations that
are executed in later instructions may be semantically
dependent on the given operation, but operations within the
same instruction cannot be dependent on each other. Com-
pilers and other code generation software analyze the pro-
gram and “schedule” individual operations into a sequence
of instructions so as to maximize “instruction-level paral-
lelism” (ILP), in other words, to maximize the number of
operations per instruction. This maximization of ILP maxi-
mizes performance.

In existing art, there are CPUs that support multiple
instruction streams for a single thread of execution. In these
CPUs the instructions of the various streams are interleaved
in memory. In some designs, a single instruction looks much
like an instruction for a single-stream machine, and instruc-
tions for each stream occupy every Nth instruction in
memory. In other schemes a group of sub-instructions to be
executed in a single cycle are concatenated into a single
instruction, which is then fetched as a unit. This approach
can yield smaller programs because the instruction encoding
can have a compact representation of idle streams and often
can merge common information from several sub-instruc-
tions into a single shared representation.

Branches and other control-flow operations occur fre-
quently in programs, control-flow target addresses are large,
and many programs assume that a code pointer is the same
size as a data pointer. Multiple instruction streams present

20

30

40

45

50

2

problems with control-flow operations. In a single-stream
machine, a control-flow operation contains or computes a
single code address which is to be the start of subsequent
execution. If there are multiple streams then each stream
needs a target address to branch to. Requiring branches and
other control-flow operations to have multiple targets (one
for each stream) makes it impossible to express a control
flow target in a simple address pointer of normal size.
However, if the streams are interleaved then control-flow
operations require only a single address, namely the point at
which the interleaved streams start. Likewise, in a VLIW-
architecture, the instruction can branch to a target instruction
that necessarily redirects all the operation streams of the
instruction as well.

Unfortunately, sequential interleave has problems too.
Instructions are represented as bit patterns encoding the
intended operation, arguments, and options and so on.
Variable-length bit pattern encoding for an instruction (re-
ferred to herein as a “variable-length instruction™) can be
used to reduce the size of an instruction or to fit as much
information within an instruction size (such as 32 bits)
dictated by other CPU design considerations. However,
variable-length instructions can be difficult to parse, and
constraints with respect to power, circuit area, and timing
can result in practical limitations on the number of variable-
length instructions that can be decoded in a machine cycle.
Variable-length instructions are used in x86 instruction set
architectures. Fixed-length bit pattern encodings for an
instruction (referred to herein as a “fixed-length instruc-
tion”) have no parallelism constraints but are wasteful of bits
and are quicker to thrash in the cache system, thus limiting
the effectiveness of the cache system. Fixed-length instruc-
tions are used in the Intel® Itanium® Architecture and in
RISC instruction set architectures.

SUMMARY

This summary is provided to introduce a selection of
concepts that are further described below in the detailed
description. This summary is not intended to identify key or
essential features of the claimed subject matter, nor is it
intended to be used as an aid in limiting the scope of the
claimed subject matter.

Tustrative embodiments of the present disclosure are
directed to a computer processing system that includes a
computer processor operably coupled to a memory system.
The memory system is configured to store instruction
blocks, wherein each instruction block is associated with an
entry address and multiple distinct instruction streams
within the instruction block. The multiple distinct instruc-
tion streams include at least a first instruction stream and a
second instruction stream. The first instruction stream has an
instruction order that logically extends in a direction of
increasing memory space relative to the entry address of the
instruction block. The second instruction stream has an
instruction order that logically extends in a direction of
decreasing memory space relative to the entry address of the
instruction block. The computer processor includes a num-
ber of multi-stage instruction processing components corre-
sponding to the multiple distinct instruction streams within
each instruction block. The number of multi-stage instruc-
tion processing components are configured to access and
process in parallel instructions belonging to multiple distinct
instruction streams of a particular instruction block stored in
the memory system.



US 9,513,920 B2

3

The multiple distinct instruction streams of each instruc-
tion block can include a single control-flow operation or
multiple control-flow operations.

In one embodiment, each of the instruction streams
includes instructions of a class different from the classes of
instructions in other instruction streams in the same instruc-
tion block, and each of the multi-stage instruction process-
ing components is associated with a corresponding class of
instructions, and each respective multi-stage instruction
processing component is configured to process instructions
belonging to the particular class of instructions associated
therewith. For example, the classes of instructions can
includes a first class of instructions and a second class of
instructions, wherein the first class of instructions includes
instructions that perform flow-control operations and
instructions that perform memory reference operations, and
wherein the second class of instructions includes instruc-
tions that perform computational operations.

In another embodiment, each respective multi-stage
instruction processing component includes a program coun-
ter, an instruction fetch unit and an associated instruction
buffer. The program counter of a respective multi-stage
instruction processing component can have a configuration
that stores a memory address for an instruction belonging to
a corresponding instruction stream of a particular instruction
block stored in the memory system. The instruction fetch
unit of the respective multi-stage instruction processing
component can have a configuration that fetches from the
memory system at least one instruction belonging to the
corresponding instruction stream of the particular instruc-
tion block. The instruction buffer of the respective multi-
stage instruction processing component can have a configu-
ration that stores at least one instruction fetched from the
memory system by the instruction fetch unit of the respec-
tive multi-stage instruction processing component. Hach
respective multi-stage instruction processing component can
further include a decode stage and associated execution
logic that are configured to process the at least one instruc-
tion stored in the instruction buffer of the respective multi-
stage instruction processing component. The decode stage
and the execution logic of each respective multi-stage
instruction processing component can be configured to pro-
cess instructions belonging to a particular class of instruc-
tions for the instruction stream associated with the respec-
tive multi-stage instruction processing component.

In another embodiment, each respective multi-stage
instruction processing component further includes an
instruction cache operably coupled to the instruction fetch
unit of the respective multi-stage instruction processing
component. The instruction fetch unit of the respective
multi-stage instruction processing component can have a
configuration that fetches a cache line from the instruction
cache of the respective multi-stage instruction processing
component for supply to at least the instruction buffer of the
respective multi-stage instruction processing component.
The instruction fetch unit of the respective multi-stage
instruction processing component can be configured such
that, when fetching a cache line corresponding to an entry
address for a given instruction block, only a select one of the
instruction fetch units is enabled to fetch the cache line
based on a predefined load balancing scheme, and multiple
instruction buffers of the multi-stage instruction processing
components are configured to store the cache line fetched by
the select one instruction fetch unit.

In yet another embodiment, each given instruction block
includes meta-data located at the entry address for the given
instruction block. In one example, the meta-data can include

20

25

35

40

45

55

4

data corresponding to the multiple distinct instruction
streams within the given instruction block, wherein the data
corresponding to a given instruction stream is used to
control fetching operations of the corresponding instruction
stream.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of the logical organization
of an instruction block according to an embodiment of the
present disclosure, where the instruction block is loaded into
the memory system of a computer processing system.

FIG. 2 is a schematic diagram illustrating a program
represented by a sequence of instruction blocks of FIG. 1.

FIG. 3 is a schematic block diagram of a computer
processing system according to an embodiment of the pres-
ent disclosure.

FIG. 4 is schematic illustration of exemplary circuit
components that can be part of the computer processing
system according to an embodiment of the present disclo-
sure.

FIG. 5 is a schematic diagram of the logical organization
of an instruction block according to another embodiment of
the present disclosure, where the instruction block is loaded
into the memory system of a computer processing system.

FIG. 6 is a flow chart that illustrates exemplary operations
carried out by one of the instruction fetch units of FIG. 4
which is adapted to utilize the Block Data for an instruction
block according to FIG. 5 in order to control fetching
operations for certain instructions of the instruction block.

FIG. 7 is a schematic illustration of exemplary fetch,
decode and execute cycles performed in parallel by the CPU
101 of FIGS. 3 and 4 for a given instruction block.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Tustrative embodiments of the disclosed subject matter
of the application are described below. In the interest of
clarity, not all features of an actual implementation are
described in this specification. It will of course be appreci-
ated that in the development of any such actual embodiment,
numerous implementation-specific decisions must be made
to achieve the developer’s specific goals, such as compli-
ance with system-related and business-related constraints,
which will vary from one implementation to another. More-
over, it will be appreciated that such a development effort
might be complex and time-consuming but would neverthe-
less be a routine undertaking for those of ordinary skill in the
art having the benefit of this disclosure.

As used herein, the term “operation” is a unit of execu-
tion, such as an individual add, load, or control-flow opera-
tion.

The term “instruction” is a unit of logical encoding
including a number of operations where all of the operations
of the instruction are semantically performed together.

The term “bundle” is a unit of physical encoding com-
prising some or all of the operations of an instruction. Thus,
an instruction decode stage decodes one bundle at a time.

In accordance with the present disclosure, a program is
loaded into and stored in a memory system as a set of
instruction blocks within the memory system to be executed
in logical sequence, not necessarily in memory sequence in
either direction, as shown in FIGS. 1 and 2. An entry point
(or entry address) is associated with each instruction block.
Each instruction block includes two distinct instruction
streams that are labeled as “Stream I” and “Stream II” in



US 9,513,920 B2

5

FIG. 1. Stream I includes a number of instructions (such as
four instructions as shown) with an instruction order that
logically extends in a direction of increasing memory space
relative to the entry address of the instruction block. Stream
1I includes a number of instructions (such as three instruc-
tions as shown) with an instruction order that logically
extends in a direction of decreasing memory space relative
to the entry address of the instruction block. The stream I
and the stream II instructions of the instruction block are
entered at the entry address by a branch operation or other
control-flow operation from some other instruction block or
sequence, and will exit from the instruction block via
another control-flow operation after executing some portion
of the stream I and stream II instructions of the instruction
block. An instruction block with one exit point (i.e., with one
control-flow operation in the sequence of stream I and
stream II instructions of the instruction block) is called a
“basic instruction block™ or “basic block” or BB. In this
case, the one control-flow operation of the BB can be
constrained to be part of the last instruction of the stream |
or the stream II instructions of the BB. An instruction block
with several possible exits point (i.e., with multiple control-
flow operations in the sequence of stream I and stream II
instructions of the instruction block) is called an “extended
instruction block™ or “extended basic block” or EBB. In this
case, one of the multiple control-flow operations of the EBB
can be constrained to be part of the last instruction of the
stream I or the stream II instructions of the EBB.

The instruction blocks stored in the memory system 100
are accessed and processed by a CPU 101 as shown in the
exemplary embodiment of FIG. 3. The CPU 101 includes
two multi-stage instruction processing components 103A,
103B that operate to access and process in parallel the
sequence of the two instruction streams I, II of particular
instruction blocks stored in the memory system 100 accord-
ing to the control flow defined by the execution of the
instructions of the instruction blocks. In parallel-processing
the two instruction streams I, II of a particular instruction
block, the multi-stage instruction processing component
103A operates to access and process the instructions of the
stream I for the particular instruction block while the multi-
stage instruction processing component 103B simultane-
ously operates to access and process the instructions of the
Stream II for the particular instruction block.

The multi-stage instruction processing component 103A
includes a number of instruction processing stages (includ-
ing an instruction fetch unit (labeled “Instruction Fetch Unit
17, 105A), an instruction buffer (labeled “Instruction Buffer
17, 107A), a decode stage (labeled “Decode Stage I, 109A)
and execution logic (labeled “Execution Logic 17, 111A))
that are arranged in a pipeline manner as shown. The
multi-stage instruction processing component 103A also
includes a program counter (labeled “Program Counter I”” or
“PC-I”, 113A) and an L1 instruction cache (labeled “L.1
Instruction Cache 17, 115A).

The L1 instruction cache 115A is logically part of the
hierarchy of the memory system 100. It is a cache that stores
copies of instruction block portions stored in the memory
system 100 in order to reduce the latency (i.e., the average
time) for accessing the instruction block portions stored in
the memory system 100. In order to reduce such latency, the
L1 instruction cache 115A can take advantage of two types
of memory localities, including temporal locality (meaning
that the same instruction will often be accessed again soon)
and spatial locality (meaning that the next memory access is
often very close to the last memory access or recent memory
accesses). The L1 instruction cache 115A can be organized

10

15

20

25

30

35

40

45

50

55

60

65

6

as a set-associative cache structure, a fully associative cache
structure, or a direct mapped cache structure as is well
known in the art. The hierarchy of the memory system 100
can also include additional levels of cache memory, such as
alevel 2 and level 3 caches, as well as system memory. One
or more of these additional levels of the cache memory can
be integrated with the CPU 101 as is well known. The details
of the organization of the memory hierarchy are not par-
ticularly relevant to the present disclosure and thus are
omitted from the figures of the present disclosure for sake of
simplicity.

The program counter 113 A stores the memory address for
a stream I instruction and thus indicates where the multi-
stage instruction processing component 103A is in process-
ing the sequence of stream [ instructions in a given instruc-
tion block. The memory address stored in the program
counter 113 A can be used to control the fetching of stream
I instructions by the instruction fetch unit 105A. Specifi-
cally, the program counter 113A can store the memory
address for the stream I instruction to fetch. This memory
address can be derived from a predicted (or resolved) target
address of a control-flow operation, the saved address in the
case of a return operation, or the sum of memory address of
the previous stream I instruction and the length of previous
stream I instruction. In some cases, the stream I instructions
can be constrained such that they do not include control-flow
operations. In this case, the memory address stored in the
program counter 113 A can be derived solely from the sum
of memory address of the previous stream [ instruction and
the length of previous stream I instruction. The memory
address stored in the program counter 113 A can be logically
partitioned into a number of high-order bits representing a
cache line address ($ Cache Line) and a number of low-order
bits representing a byte offset within the cache line for the
stream 1 instruction.

The instruction fetch unit 105A, when activated, sends a
request to the L1 instruction cache 115 A to fetch a cache line
from the L1 instruction cache 105A at a specified cache line
address ($ Cache Line). This cache line address can be
derived from the high-order bits of the program counter
113A (or possibly the program counter 113B in some
circumstances). The L1 instruction cache 115A services this
request (possibly accessing lower levels of the memory
system if missed in the L1 instruction cache 115A), and
supplies the requested cache line to the instruction fetch unit
105A. The instruction fetch unit 105A passes the cache line
returned from the L1 instruction cache 115A to the instruc-
tion buffer 107A for storage therein. The instruction fetch
unit 105A can also be configured to pass the cache line
returned from the L1 instruction cache 115A to the instruc-
tion fetch unit 107B of the multi-stage instruction processing
component 103B for storage in the instruction buffer 107B
of the of the multi-stage instruction processing component
103B. The instruction fetch unit 105A can also be configured
to receive a cache line returned from the L1 instruction
cache 115B of the multi-stage instruction processing com-
ponent 103B and pass the received cache line to the instruc-
tion buffer 107A for storage in the instruction buffer 107A.

The decode stage 109A of the multi-stage instruction
processing component 103 A is configured to decode one or
more stream I instructions stored in the instruction buffer
107A. Such decoding can involve parsing the stream I
instruction to determine the type of operation(s) encoded by
the one or more stream | instructions, to determine the length
of the stream [ instruction (for the case where the stream |
instructions can have variable-lengths), and generating con-
trol signals required for execution of the operations encoded



US 9,513,920 B2

7

by the one or more stream I instructions by the execution
logic 111A. The execution logic 111A utilizes the results of
the decode stage 109A to execute the operations encoded by
the one or more stream I instructions. The possible opera-
tions encoded by a given stream I instruction can be con-
strained by design and organized into certain groups. In this
case, the execution logic 111A can include functional units
that are configured to execute certain one(s) of these groups
as not others (such as one or more fixed-point unit for
instructions with integer-based operations, one or more
floating-point units for instructions with floating point
operations, one or more “computational” functional units for
instructions with “computational” operations, and one or
more one or more functional units for flow-control opera-
tions, and for memory access operations), and the decode
stage 109A can include decoders that are configured to
decode the operations belonging to the different groups. The
results of each decoder are then forwarded to the corre-
sponding functional unit that executes the operation. The
“computational” operations can involve no input and one
output, one or more inputs and one or more outputs, one
input and no output, and the “computational” functional
units can employ a fixed number of non-repeating stages or
stages that repeat their computational operations a fixed
number of times to produce a result.

Similar to the multi-stage instruction processing compo-
nent 103A, the multi-stage instruction processing compo-
nent 103B includes a number of instruction processing
stages (including an instruction fetch unit (labeled “Instruc-
tion Fetch Unit I, 105B), an instruction buffer (labeled
“Instruction Buffer I1I”, 107B), a decode stage (labeled
“Decode Stage II”, 109B) and execution logic (labeled
“Execution Logic 117, 111B)) that are arranged in a pipeline
manner as shown. The multi-stage instruction processing
component 103B also includes a program counter (labeled
“Program Counter II”” or “PC-11”, 113B) and an L1 instruc-
tion cache (labeled “L1 Instruction Cache 11, 115B).

The L1 instruction cache 115B is logically part of the
hierarchy of the memory system 100. It is a cache that stores
copies of instruction block portions stored in the memory
system 100 in order to reduce the latency (i.e., the average
time) for accessing the instruction block portions stored in
the memory system 100. In order to reduce such latency, the
L1 instruction cache 115B can take advantage of two types
of memory localities, including temporal locality (meaning
that the same instruction will often be accessed again soon)
and spatial locality (meaning that the next memory access is
often very close to the last memory access or recent memory
accesses). The L1 instruction cache 115B can be organized
as a set-associative cache structure, a fully associative cache
structure, or a direct mapped cache structure as is well
known in the art. The hierarchy of the memory system 100
can also include additional levels of cache memory, such as
a level 2 and level 3 caches, as well as system memory as
described above. The L1 instruction cache 115B can be of
the same size as the L1 instruction cache 115A if the
encodings and operations of the two instruction streams
produce roughly similar demand for bytes. However, if the
encoding and/or operations of the two instruction streams
lead to imbalances demand for bytes, the two L1 instruction
caches 115A, 115B can have different sizes. The larger one
may have the same number of lines as the smaller but with
a larger line size, or may have more lines of the same size.
Which strategy will perform better in practice depends on
the details of the demand and the structure of the hierarchy
of the memory system 100.

20

25

40

45

55

8

The program counter 113B stores the memory address for
a stream II instruction and thus indicates where the multi-
stage instruction processing component 103B is in process-
ing the sequence of stream II instructions in a given instruc-
tion block. The memory address stored in the program
counter 113B can be used to control the fetching of stream
II instructions by the instruction fetch unit 105B. Specifi-
cally, the program counter 113B can store the memory
address for the stream II instruction to fetch. This memory
address can be derived from a predicted (or resolved) target
address of a control-flow operation, the saved address in the
case of a return operation, or the sum of memory address of
the previous stream I instruction and the length of previous
stream II instruction. In some cases, the stream II instruc-
tions can be constrained such that they do not include
control-flow operations. In this case, the memory address
stored in the program counter 113B can be derived solely
from the sum of memory address of the previous stream II
instruction and the length of previous stream II instruction.
The memory address stored in the program counter 113B
can be logically partitioned into a number of high-order bits
representing a cache line address ($ Cache Line) and a
number of low-order bits representing a byte offset within
the cache line for the stream II instruction.

The instruction fetch unit 1058, when activated, sends a
request to the L1 instruction cache 115B to fetch a cache line
from the L1 instruction cache 105B at a specified cache line
address ($ Cache Line). This cache line address can be
derived from the high-order bits of the program counter
113B (or possibly the program counter 113A in some
circumstances). The L1 instruction cache 115B services this
request (possibly accessing higher levels of the memory
system if missed in the L1 instruction cache 115B), and
supplies the requested cache line to the instruction fetch unit
105B. The instruction fetch unit 105B passes the cache line
returned from the L1 instruction cache 115B to the instruc-
tion buffer 107B for storage therein. The instruction fetch
unit 105B can also be configured to pass the cache line
returned from the L1 instruction cache 115B to the instruc-
tion fetch unit 107 A of the multi-stage instruction processing
component 103 A for storage in the instruction buffer 107A
of the of the multi-stage instruction processing component
103A. The instruction fetch unit 105B can also be config-
ured to receive a cache line returned from the L1 instruction
cache 115A of the multi-stage instruction processing com-
ponent 103A and pass the received cache line to the instruc-
tion buffer 107B for storage in the instruction buffer 107B.

The decode stage 109B of the multi-stage instruction
processing component 103B is configured to decode one or
more stream I instructions stored in the instruction buffer
107B. Such decoding can involve parsing the stream II
instruction to determine the type of operation(s) encoded by
the one or more stream II instructions, to determine the
length of the stream II instruction (for the case where the
stream [ instructions can have variable-lengths), and gener-
ating control signals required for execution of the operations
encoded by the one or more stream II instructions by the
execution logic 111B. The execution logic 111B utilizes the
results of the decode stage 109B to execute the operations
encoded by the one or more stream II instructions. The
possible operations encoded by a given stream II instruction
can be constrained by design and organized into certain
groups. In this case, the execution logic 111B can include
functional units that are configured to execute certain one(s)
of these groups as not others (such as one or more fixed-
point unit for instructions with integer-based operations, one
or more floating-point units for instructions with floating



US 9,513,920 B2

9

point operations, one or more “computational” functional
units for instructions with “computational” operations, and
one or more one or more functional units for flow-control
operations, and for memory access operations), and the
decode stage 109B can include decoders that are configured
to decode the operations belonging to the different groups.
The results of each decoder are then forwarded to the
corresponding functional unit that executes the operation.
The “computational” operations can involve no input and
one output, one or more inputs and one or more outputs, one
input and no output, and the “computational” functional
units can employ a fixed number of non-repeating stages or
stages that repeat their computational operations a fixed
number of times to produce a result.

FIG. 4 is a schematic diagram that illustrates an exem-
plary embodiment of the instruction fetch unit 105A of FIG.
3. Note that the instruction fetch unit 105B can be a mirror
image of the instruction fetch unit 105A of FIG. 4 and thus
can include like components that are operably coupled
between the L1 instruction cache 115B and the instruction
buffer 107 and operate in a similar manner to the compo-
nents of the instruction fetch unit 105A as described below.
Specifically, the instruction fetch unit 105A includes an
instruction fetch block 401A that is supplied with a cache
line address (labeled “$ Cache_Line), an entry signal, and
the output of a control circuit 403A (labeled “dominant?).
The entry signal is set (raised) when the instruction sequence
enters into a new instruction block. Otherwise, the entry
signal is not set (cleared) and provides an indication that the
fetch operations should fetch one or more sequential cache
line(s) in the current instruction block. The entry signal can
be generated by branch prediction logic (not shown) that is
used to predict the outcome of conditional control-flow
operations (such as conditional control-flow instructions) or
by the execution logic 111A or 111B upon executing and
resolving a conditional control-flow operation (such as when
resolving a mispredicted control-flow instruction). The con-
trol circuit 403A is also supplied with the entry signal. The
control circuit 403A is configured to selectively set (raise) a
dominant signal, which is used along with the entry signal
to selectively enable the instruction fetch block 401A in
order to fetch the entry cache line into the new instruction
block according to a load balancing scheme that is imple-
mented by the control circuit 403A. Specifically, the control
circuit 403 A sets the dominant signal if and only if the entry
signal is set and the load balancing scheme dictates that the
instruction fetch block 401 A should be activated for fetching
the entry cache line for the instruction block. Under this load
balancing scheme, the control circuit 403A allows the
instruction fetch block 401A to fetch the entry cache line for
some instruction blocks, but disables it for fetching the entry
line for other instruction blocks. When the instruction fetch
block 401A is disabled, the corresponding instruction fetch
block 401B for the multi-stage instruction processing com-
ponent 103B (not shown) is enabled to fetch the entry line
for the instruction block. In this manner, the load balancing
scheme distributes the fetching of entry cache lines between
the two instruction fetch blocks 401A, 401B and the two L1
instruction caches 115A, 115B. In one embodiment, the load
balancing scheme is configured to select one of the two
instruction fetch blocks 401A, 401B based on the low order
significant bit of the entry address for the instruction block.
This effectively randomizes the selection of one of the two
instruction fetch blocks 401 A, 401B as well as the residence
of the entry cache line the corresponding one of the two L1
instruction caches 115A, 115B.

10

15

20

25

30

35

40

45

50

55

60

65

10

When the dominant signal is set by the control circuit
403 A (for fetching the entry cache line) or the entry signal
is not set (for fetching sequential cache line(s) within an
instruction block), the instruction fetch block 401A sends a
request to the L1 instruction cache 115 A to fetch a cache line
from the L1 instruction cache 115A at a specified cache line
address ($ Cache Line). The L1 instruction cache 115A
services this request (possibly accessing lower levels of the
memory system if missed in the LL1 instruction cache 115A),
and supplies the requested cache line to the instruction fetch
block 401A. The instruction fetch block 401A passes the
cache line returned from the L1 instruction cache 115A to
drive circuitry 405A and to select fetch/other circuitry 407A.

The drive circuitry 405A is selectively enabled to pass the
cache line returned from the L1 instruction cache 115A to
the select fetch/other circuitry 407B for the multi-stage
instruction processing component 103B (not shown) based
on the dominant signal. Specifically, the drive circuitry
405A is enabled to pass the cache line returned from the .1
instruction cache 115A to the select fetch/other circuitry
407B for the multi-stage instruction processing component
103B if and only if the dominant signal is set. In this case,
the select fetch/other circuitry 407B for the multi-stage
instruction processing component 103B is configured to
receive the cache line returned from the L1 instruction cache
115A and pass it to the instruction buffer 107B for storage
therein.

The select fetch/other circuitry 407A is configured in one
of two modes based on the signal levels of the dominant
signal and the entry signal. Specifically, the select fetch/
other circuitry 407A operates in a “select fetch” mode that
passes the cache line returned from the L1 instruction cache
115A to the instruction buffer 107 A for storage therein if and
only if the dominant signal is set or the entry signal. In this
manner, the “select fetch” mode is used to pass the cache
line returned from the L1 instruction cache 115A to the
instruction buffer 107A for storage therein for all fetches
(including entry line fetches and sequential line fetches)
performed by the instruction fetch block 401A. The select
fetch/other circuitry 407 A operates in a “select other” mode
that receives the cache line returned from the L1 instruction
cache 115B via the drive circuitry 405B for the multi-stage
instruction processing component 103B and passes this
received cache line to the instruction buffer 107 A for storage
therein if and only if the dominant signal is not set and the
entry signal is set. In this manner, the “select other” mode is
used to receive the cache line returned from the L1 instruc-
tion cache 115B and pass it to the instruction buffer 107A for
storage therein for all entry line fetches performed by the
instruction fetch block 401B of the multi-stage instruction
processing component 103B. With these operations, the
entry cache line for the instruction block is stored in both
instruction buffers 107A, 107B. This is useful due to the
organization of the instruction block which shares a com-
mon entry address across the two instruction streams I, II.
With this organization, the entry cache line will be available
for use by the decoder stages 109A, 109B for both streams
I, IT when entering the instruction block.

Note that the CPU 101 employ caches 115A, 115B to
mitigate the delay in accessing the instruction blocks from
the memory system 100. So long as an instruction block
portion needed for execution of the program is located in the
caches 115A, 115B, then the execution of the program will
not be delayed by requesting instructions from the lower
levels of the hierarchy of the memory system 100. However,
if a needed instruction block portion is not in caches 115A,
115B, then the program must stall while it is accessed from



US 9,513,920 B2

11

the lower levels of the hierarchy of the memory system 100.
Executed instructions are frequently re-executed in the near
future, so any fetched from memory will also be placed in
the cache for when next needed, replacing some other
instruction that seems less likely to be needed soon.

The totality of instructions actually executed in a CPU
over a brief period is called its working set. If the capacity
of the cache is big enough to hold the working set, then the
program can be executed with infrequent need to fetch
instruction from memory with the concomitant delay. How-
ever, if the cache is smaller than the working set, then the
instruction replaced by one fetched from memory will soon
be needed again and have to be re-fetched, only to replace
a different soon-needed instruction. This condition of end-
less instruction replacement, called thrashing, is well
known. Thrashing can severely damage program perfor-
mance. While thrashing can be somewhat ameliorated by
reorganizing the program, the only real solution is a larger
instruction cache, one large enough to hold the working set
of the program. Unfortunately, large caches are expensive in
chip area and power, and introduce extra delay in obtaining
instructions from the cache. Balancing the need for larger
instruction caches against their costs is an important con-
sideration in designing a CPU. Note that for any given cache
size and encoding there is a limit to the size of working set
that can fit into a cache without thrashing.

In the instruction block organization of the present dis-
closure, instructions are organized into two or more disjoint
instruction streams with each instruction stream having its
own instruction cache. With multiple instruction caches and
hence a large number of cache lines, the CPU 101 as
described herein can ameliorate the thrashing problem by
accommodating working sets that are much larger than can
be handled by a single cache. And, unlike a very large single
cache, the multiple caches do not incur extra delay for
instruction access.

Moreover, the instruction streams are located adjacent in
memory at the block entry point. Hence the cache line that
contains the entry point will contain some leading fraction of
both streams. In the CPU 101 described above, only a single
copy of the entry cache line is stored in one of the instruction
caches of the CPU, while the entry cache line is stored in
multiple instruction buffers. Thereafter, the decoder stage for
each respective instruction stream will fetch subsequent
instructions from lines in its assigned instruction cache only,
because only these lines contain instructions from the
desired stream and not from the other steam. This eliminates
duplication across the multiple caches.

FIG. 5 is a block diagram illustrating an exemplary format
for instruction blocks as described herein. In this exemplary
format, an entry point (or entry address) is associated with
each instruction block. Meta-data for the block (labeled
“Block Data”) is located at the entry point. Each instruction
block includes two distinct instruction streams that are
labeled as “Stream 1” and “Stream II” in FIG. 5. Stream I
includes a number of instructions (such as four instructions
as shown) with an instruction order that logically extends in
a direction of increasing memory space relative to the entry
address of the instruction block. The stream I instructions of
the instruction block are concatenated together according to
an instruction order that extends from the entry point toward
increasing memory space relative to the entry point. The
head (first one) of these stream I instructions is located
adjacent the Block Data in the increasing memory space
relative to the entry point. Stream II includes a number of
instructions (such as three instructions as shown) with an
instruction order that logically extends in a direction of

30

40

45

50

12

decreasing memory space relative to the entry address of the
instruction block. The stream II instructions of the instruc-
tion block are concatenated together according to an instruc-
tion order that extends from the entry point toward decreas-
ing memory space relative to the entry point. The head (first
one) of these stream II instructions is located adjacent the
Block Data in the decreasing memory space relative to the
entry point. In this configuration, the first stream I instruc-
tion is located adjacent one end of the Block Data and first
stream II instruction is located adjacent the opposite end of
the Block Data as shown. Similar to the instruction blocks
of FIG. 1, an instruction block with one exit point (i.e., with
one control-flow operation in the sequence of stream I and
stream Il instructions of the instruction block) is called a
“basic instruction block™ or “basic block” or BB. In this
case, the one control-flow operation of the BB can be
constrained to be part of the last instruction of the stream |
or the stream II instructions of the BB. An instruction block
with several possible exits point (i.e., with multiple control-
flow operations in the sequence of stream I and stream II
instructions of the instruction block) is called an “extended
instruction block™ or “extended basic block” or EBB. In this
case, one of the multiple control-flow operations of the EBB
can be constrained to be part of the last instruction of the
stream 1 or the stream II instructions of the EBB.

The Block Data can contain information useful for pro-
cessing the instructions of the instruction block. In one
example, the Block Data includes two fields BD-I, BD-II
corresponding to the two instruction streams I, II that encode
information used to control fetching operations for the two
instruction streams I, I1. Specifically, the field BD-I encodes
information that identifies the maximum number of sequen-
tial cache lines that are to be fetched for the stream I
instructions of the instruction block. These sequential cache
lines are found in increasing memory space corresponding to
the instruction order of the stream I instructions as shown in
FIG. 5. Similarly, the field BD-II encodes information that
identifies the maximum number of sequential cache lines
that are to be fetched for the stream II instructions. These
sequential cache lines are found in decreasing memory space
corresponding to the instruction order of the stream II
instructions as shown in FIG. 5. In other embodiments, the
Block Data can encode other useful information, such as
hints or guides for branch prediction operations with respect
to the instruction block, security codes to detect code-
overwrite exploits and/or memory error operations within
the instruction block, source code locators for use by a
debugger, and others.

FIG. 6 is a flow chart that illustrates exemplary operations
carried out by the instruction fetch unit 105A of FIG. 4
which is adapted to utilize the Block Data for an instruction
block according to FIG. 5 in order to control fetching
operations for the stream I instructions of the instruction
block. Note that similar operations are carried out by the
instruction fetch unit 105B for fetching the stream II instruc-
tions of the instruction block. The operations begin in 601
where a cache line address ($ Cache_Line) is supplied to the
instruction fetch block 401.

In 603, the entry signal is supplied to the instruction fetch
block 401A and to the control circuit 403A. As described
above, when set the entry signal indicates that the cache line
address supplied to the instruction fetch block 401 A includes
an entry point into an instruction block.

In 603 and 605, the control circuit 403A evaluates the
entry signal and predefined load balancing scheme as
described above in order to generate an appropriate bit valve
(set or clear) based on the entry signal and the load balancing



US 9,513,920 B2

13

scheme. Specifically, the control circuit 403 A sets the domi-
nant signal if and only if the entry signal is set and the load
balancing scheme dictates that the instruction fetch block
401A should be activated for fetching the entry cache line
for the instruction block.

As part of 605, the instruction fetch block 401A also
evaluates the entry signal. If the entry signal is not set, the
operations of the instruction fetch block 401A continues to
607 where it determines if a cache line counter exceeds the
maximum number of sequential cache lines that are to be
fetched for the stream I instructions of the instruction block
as encoded by the BD-I field of the instruction block. The
cache line counter is initialized when fetching the entry
cache line for a given instruction block and incremented
when fetching each successive cache line. If so, the opera-
tions of the instruction fetch block 401 continue to 610
where further fetching of stream I instructions is disabled
and the decode stage 109A is disabled for the next stream |
instruction. The operation of 609 and 610 thus limits the
fetching operations of the stream I instructions such that
sequential execution of the stream I instructions of the
instruction block never proceed beyond the end of the whole
instruction block. If the cache line counter does not exceed
the maximum number of sequential cache lines that are to be
fetched for the stream I instructions of the instruction block,
the operations of the instruction fetch block 401 A continue
to 611.

In step 611, the instruction fetch block 401A is selectively
enabled based on the dominant signal and the entry signal.
Specifically, the instruction fetch block 401A is enabled
when the dominant signal is set (for fetching the entry cache
line) or the entry signal is not set (for fetching sequential
cache line(s) within an instruction block). If the instruction
fetch block 401A is enabled, the instruction fetch block
401A sends a request to the L1 instruction cache 115A to
fetch a cache line from the L1 instruction cache 115A at a
specified cache line address ($ Cache Line). The L1 instruc-
tion cache 115A services this request (possibly accessing
higher levels of the memory system if missed in the L1
instruction cache 115A), and supplies the requested cache
line to the instruction fetch block 401A. The instruction
fetch block 401A passes the cache line returned from the [.1
instruction cache 115A to drive circuitry 405A and to select
fetch/other circuitry 407A.

In step 613, the drive circuitry 405 A is selectively enabled
to pass the cache line returned from the L1 instruction cache
115A to the select fetch/other circuitry 407B for the multi-
stage instruction processing component 103B (not shown)
based on the dominant signal. Specifically, the drive cir-
cuitry 405A is enabled to pass the cache line returned from
the L1 instruction cache 115A to the select fetch/other
circuitry 407B if and only if the dominant signal is set. In
this case, the select fetch/other circuitry 407B for the multi-
stage instruction processing component 103B is configured
to receive the cache line returned from the L1 instruction
cache 115A and pass it to the instruction buffer 107B for
storage therein.

In step 617, the select fetch/other circuitry 407A is
configured in one of two modes based on the signal levels of
the dominant signal and the entry signal. Specifically, the
select fetch/other circuitry 407 A operates in a “select fetch”
mode that passes the cache line returned from the L1
instruction cache 115A to the instruction buffer 107A for
storage therein if and only if the dominant signal is set or the
entry signal. In this manner, the “select fetch” mode is used
to pass the cache line returned from the L1 instruction cache
115A to the instruction buffer 107 A for storage therein for all

20

40

45

55

14

fetches (including entry line fetches and sequential line
fetches) performed by the instruction fetch block 401A. The
select fetch/other circuitry 407 A operates in a “select other”
mode that receives the cache line returned from the L1
instruction cache 115B via the drive circuitry 405B for the
multi-stage instruction processing component 103B and
passes this received cache line to the instruction buffer 107A
for storage therein if and only if the dominant signal is not
set and the entry signal is set. In this manner, the “select
other” mode is used to receive the cache line returned from
the L1 instruction cache 115B and pass it to the instruction
buffer 107A for storage therein for all entry line fetches
performed by the instruction fetch block 401B of the multi-
stage instruction processing component 103B.

In step 619, the cache line passed by the select fetch/other
circuitry 407A in 617 is stored in the instruction buffer
107A.

With these operations, the entry cache line for the instruc-
tion block is stored in both instruction buffers 107A, 107B.
This is useful due to the organization of the instruction block
which shares a common entry address across the two
instruction streams I, II. With this organization, the entry
cache line will be available for use by the decoder stages
109A, 109B for both streams I, II when entering the instruc-
tion block.

In other embodiments, it is contemplated that the BD-I
field and/or the BD-II field can encode information that
represents that there is no maximum limit to the number of
sequential cache lines that are to be fetched for the corre-
spond instruction streams I, II. In this case, the BD field can
be used to treat the cache line counter as a saturating counter
that bypasses the operations of 610 and thus places no limit
on the fetching of instructions beyond the end of an instruc-
tion block.

In the instruction formats described herein, there can be
one or more semantic relationships between the stream I
instructions and the stream I instruction of a given instruc-
tion block that relate to the manner that the stream I
instructions and the stream I instruction of a given instruc-
tion block are decoded by the decode stages 109A, 109B and
issued for execution by the execution logic 111A, 11B of the
multi-stage instruction processing components 103A, 103B.

For example, the stream I instructions and the stream II
instructions of the given instruction block can be decoded in
a synchronous lock step manner, where one stream I instruc-
tion and one stream II instruction are taken as a matching
pair that are synchronously decoded together.

In another example, the stream I instructions and the
stream Il instructions of the given instruction block can be
decoded in a non-synchronous lock step manner where one
stream ] instruction or one stream II instruction is taken in
an alternating manner according to some defined ratio and
decoded in a non-synchronous manner with respect to one
another.

In yet another example, the stream I instructions and the
stream Il instructions of the given instruction block can be
decoded and issued for execution in a synchronous manner
where there is not necessarily lock step coordination
between the two instruction streams. In this example, the
operations(s) of a stream I instruction of the given instruc-
tion block can issue together with the operations of a stream
II instruction of the given instruction block, or the opera-
tion(s) of either the stream I instruction or the stream II
instruction (but not both) of the given instruction block can
issue together, or the issuance of operation(s) of either the



US 9,513,920 B2

15

stream I instruction and/or the stream II instruction of the
given instruction block can be paused for some determined
time.

In another example, the stream 1 instructions and the
stream 11 instructions of the given instruction block can be
decoded and issued for execution in an asynchronous man-
ner where the stream I instructions and the stream II instruc-
tions are decoded and issued as efficiently as possible. In this
case, the issuance of one of the instruction streams (i.e.,
“leading stream”) can lead the issuance of the other instruc-
tion stream (i.e., the “lagging stream”) and violate program
semantics. In order to avoid this situation and preserve the
program semantics, the leading stream can be paused until
the lagging stream catches up.

In all of these examples, there is a potential semantic
dependency between any instruction and any other instruc-
tions decoded and executed simultaneously or subsequently,
and the details of such semantic dependencies vary accord-
ing to the examples given above.

FIG. 7 is a schematic illustration of exemplary fetch,
decode and execute cycles performed in parallel by the CPU
101 of FIGS. 3 and 4 for a given instruction block. In this
example, the stream I instructions and the stream II instruc-
tions of the given instruction block are decoded and issued
for execution in a synchronous lock step manner, where one
stream ] instruction and one stream II instruction are taken
as a matching pair that are synchronously decoded and
executed together. Note that this sequence includes execu-
tion of four stream I and four stream II instructions of a
complete instruction block. It is contemplated that in other
examples, execution (whether speculative or not) of control-
flow operations within an instruction block can branch the
program sequence to another instruction block before com-
pleting the instruction block. In this case, the CPU 101 can
be performing parts of the fetch, decode and execute cycles
in parallel for more than one instruction block. Furthermore,
note that the synchronization and lock step nature of the
various fetching, decoding, and execution operations of the
instruction streams in FIG. 7 is exemplary nature and thus
can be varied greatly across designs in accordance with the
semantic dependencies of the instruction streams of an
instruction block as well as the program semantics as
described above.

The organization of the processor and its method of
operation as described herein can provide several advan-
tages, not all of which will be applicable depending on other
aspects of the processor design.

For example, the capacity of the top-level instruction
cache can be effectively doubled, without increasing the
latency arising from the physical dimensions of a cache of
a given capacity. Moreover, the cache bandwidth require-
ment of each cache is effectively halved for a given overall
instruction bandwidth.

In another example, for a variable-length encoding of
instructions in which more than one instruction must be
decoded together, the parse complexity and latency of
decode can be effectively reduced by a polynomial factor
that is at least a factor of two. Furthermore, there can be a
natural location for extra-instruction meta-information that
may be used in the decoding process. Specifically, the
meta-information can be used to prevent over-fetching of
lines that will not be used, reducing cache bandwidth
demand and clutter.

There have been described and illustrated herein several
embodiments of a computer process and corresponding
method of operations. While particular embodiments of the
invention have been described, it is not intended that the

10

15

20

25

30

35

40

45

50

55

60

65

16

invention be limited thereto, as it is intended that the
invention be as broad in scope as the art will allow and that
the specification be read likewise. For example, the func-
tionality of the CPU 101 as described herein can be embod-
ied as a processor core and multiple instances of the pro-
cessor core can be fabricated as part of a single integrated
circuit (possibly along with other structures). It will there-
fore be appreciated by those skilled in the art that yet other
modifications could be made to the provided invention
without deviating from its spirit and scope as claimed.

What is claimed is:

1. A computer processing system comprising:

a memory system that is configured to store a plurality of
instruction blocks, wherein each instruction block is
associated with an entry address and multiple distinct
instruction streams within the instruction block,
wherein the multiple distinct instruction streams
include at least a first instruction stream and a second
instruction stream, the first instruction stream having a
plurality of instructions with an instruction order that
logically extends in a direction of increasing memory
space relative to said entry address, and the second
instruction stream having a plurality of instructions
with an instruction order that logically extends in a
direction of decreasing memory space relative to said
entry address;

a computer processor, operably coupled to the memory
system, including a plurality of multi-stage instruction
processing components corresponding to the multiple
distinct instruction streams within each instruction
block, wherein the plurality of multi-stage instruction
processing components each include a program coun-
ter, an instruction fetch unit and an associated instruc-
tion buffer, which are configured to access and process
in parallel instructions belonging to multiple distinct
instruction streams of a particular instruction block
stored in the memory system.

2. A computer processing system according to claim 1,

wherein:

the multiple distinct instruction streams of each instruc-
tion block include a single control-flow operation or
multiple control-flow operations.

3. A computer processing system according to claim 1,

wherein:

the multiple distinct instruction streams of each instruc-
tion block comprise different classes of instructions;
and

each of the multi-stage instruction processing components
is associated with at least one corresponding class of
instructions, and each respective multi-stage instruc-
tion processing component is configured to process
instructions belonging to a particular class of instruc-
tions associated therewith.

4. A computer processing system according to claim 3,

wherein:

the classes of instructions include at least a first class of
instructions and a second class of instructions;

the first class of instructions includes instructions that
perform flow-control operations and instructions that
perform memory reference operations;

the second class of instructions includes instructions that
perform computational operations;

a first multi-stage instruction processing component is
configured to process instructions belonging to the first
class of instructions; and



US 9,513,920 B2

17

a second multi-stage instruction processing component is
configured to process instructions belonging to the
second class of instructions.

5. A computer processing system according to claim 1,

wherein:

the program counter of a respective multi-stage instruc-
tion processing component has a configuration that
stores a memory address for an instruction belonging to
a corresponding instruction stream of a particular
instruction block stored in the memory system;

the instruction fetch unit of the respective multi-stage
instruction processing component has a configuration
that fetches from the memory system at least one
instruction belonging to the corresponding instruction
stream of the particular instruction block; and

the instruction buffer of the respective multi-stage instruc-
tion processing component has a configuration that
stores at least one instruction fetched from the memory
system by the instruction fetch unit of the respective
multi-stage instruction processing component.

6. A computer processing system according to claim 5,

wherein:

each given instruction block includes meta-data located at
the entry address for a given instruction block.

7. A computer processing system according to claim 6,

wherein:

the meta-data includes data corresponding to the multiple
distinct instruction streams within each instruction
block, wherein the data corresponding to a given
instruction stream is used to control fetching operations
of the given instruction stream.

8. A computer processing system according to claim 7,

wherein:

the meta-data includes first data corresponding to the first
instruction stream within each instruction block and
second data corresponding to the second instruction
stream within each instruction block;

wherein the first data is used to control fetch operations
with respect to sequential cache lines located in
increasing memory space relative to the entry address
for a given instruction block, and the second data is
used to control fetching operations with respect to
sequential cache lines located in decreasing memory
space relative to the entry address for the given instruc-
tion block.

9. A computer processing system according to claim 1,

wherein:

each respective multi-stage instruction processing com-
ponent further includes a decode stage and associated
execution logic that are configured to process the at
least one instruction stored in the instruction buffer of
the respective multi-stage instruction processing com-
ponent.

10. A computer processing system according to claim 9,

wherein:

the instructions of the multiple distinct instruction streams
of each instruction block are logically organized into
classes of instructions; and

the decode stage and the execution logic of each respec-
tive multi-stage instruction processing component are
configured to process instructions belonging to at least
one class of instructions for the instruction stream
associated with the respective multi-stage instruction
processing component.

11. A computer processing system according to claim 9,

wherein:

each respective multi-stage instruction processing com-
ponent further includes an instruction cache operably
coupled to the instruction fetch unit of the respective
multi-stage instruction processing component, wherein

10

15

20

25

30

35

40

45

50

55

60

65

18

the instruction fetch unit of the respective multi-stage
instruction processing component has a configuration
that fetches a cache line from the instruction cache of
the respective multi-stage instruction processing com-
ponent for supply to at least the instruction buffer of the
respective multi-stage instruction processing compo-
nent.
12. A computer processing system according to claim 11,
wherein:
the instruction fetch units of the multi-stage instruction
processing components are configured such that, when
fetching a cache line corresponding to an entry address
for a given instruction block, only a select one of the
instruction fetch units is enabled to fetch the cache line
based on a predefined load balancing scheme, and
multiple instruction buffers of the multi-stage instruc-
tion processing components are configured to store the
cache line fetched by the select one instruction fetch
unit.
13. A computer processing system according to claim 12,
wherein:
the instruction fetch unit of each respective multi-stage
instruction processing component is configured to fetch
a cache line based on a cache line address supplied
thereto, wherein the cache line address supplied thereto
corresponds to one of an entry address for a given
instruction block and an address for an instruction
belonging to the corresponding instruction stream
within a given instruction block.
14. A computer processing system according to claim 13,
wherein:
the entry address for a given block is derived from the
memory address stored in one of the program counters
of the multi-stage instruction processing components,
which represents the results of prediction or resolution
of a control-flow operation.
15. A method of processing instructions in a computer
processing system, the method comprising:
storing a plurality of instruction blocks in a memory
system, wherein each instruction block is associated
with an entry address and multiple distinct instruction
streams within the instruction block, wherein the mul-
tiple distinct instruction streams include at least a first
instruction stream and a second instruction stream, the
first instruction stream having a plurality of instructions
with an instruction order that logically extends in a
direction of increasing memory space relative to said
entry address, and the second instruction stream having
a plurality of instructions with an instruction order that
logically extends in a direction of decreasing memory
space relative to said entry address;
providing a computer processor including a plurality of
multi-stage instruction processing components corre-
sponding to the multiple distinct instruction streams
within each instruction block, wherein the plurality of
multi-stage instruction processing components each
include a program counter, an instruction fetch unit and
an associated instruction buffer, which are configured
to access and process in parallel instructions belonging
to multiple distinct instruction streams of a particular
instruction block stored in the memory system.
16. A method according to claim 15, wherein:
the instructions of the multiple distinct instruction streams
within each instruction block include a single control-
flow operation or multiple control-flow operations.
17. A method according to claim 15, wherein:
the multiple distinct instruction streams of each instruc-
tion block comprise different classes of instructions;
and



US 9,513,920 B2

19

each of the multi-stage instruction processing components
is associated with at least one corresponding class of
instructions, and each respective multi-stage instruc-
tion processing component is configured to process
instructions belonging to a particular class of instruc-
tions associated therewith.

18. A method according to claim 17, wherein:

the classes of instructions include at least a first class of
instructions and a second class of instructions;

wherein the first class of instructions includes instructions
that perform flow-control operations and instructions
that perform memory reference operations;

the second class of instructions includes instructions that
perform computational operations;

a first multi-stage instruction processing component is
configured to process instructions belonging to the first
class of instructions; and

a second multi-stage instruction processing component is
configured to process instructions belonging to the
second class of instructions.

19. A method according to claim 15, wherein:

each respective multi-stage instruction processing com-
ponent further includes an instruction cache operably
coupled to the instruction fetch unit of the respective
multi-stage instruction processing component; and

the method further comprises configuring the instruction
fetch unit of each respective multi-stage instruction
processing component to fetch at least one cache line
from the instruction cache of the respective multi-stage
instruction processing component.

20. A method according to claim 19, further comprising:

configuring the instruction fetch units of the multi-stage
instruction processing components such that, when
fetching a cache line corresponding to an entry address
for a given block, only a select one of the instruction
fetch units is enabled to fetch the cache line based on
a predefined load balancing scheme.

21. A method according to claim 20, further comprising:

configuring the instruction fetch unit of each respective
multi-stage instruction processing component to fetch a
cache line based on a cache line address supplied
thereto, wherein the cache line address supplied thereto
corresponds to one of an entry address for a given
instruction block and an address for an instruction
belonging to the corresponding instruction stream
within a given instruction block.

22. A method according to claim 21, further comprising:

deriving the entry address for a given instruction block
based on the memory address stored in one of multiple
program counters for the multi-stage instruction pro-
cessing components, which represents the results of
prediction or resolution of a control-flow operation.

23. A method according to claim 15, wherein:

each given instruction block includes meta-data located at
the entry address for a given instruction block.

24. A method according to claim 23, wherein:

the meta-data includes data corresponding to the multiple
distinct instruction streams within each instruction
block, wherein the data corresponding to a given
instruction stream is used to control fetching operations
of the given instruction stream.

25. A method according to claim 24, wherein:

the meta-data includes first data corresponding to the first
instruction stream within each instruction block and
second data corresponding to the second instruction
stream within each instruction block; and

15

20

40

45

20

the method further comprises using the first data to
control fetch operations with respect to sequential
cache lines located in increasing memory space relative
to the entry address for a given instruction block, and
using the second data to control fetching operations
with respect to sequential cache lines located in
decreasing memory space relative to the entry address
for the given instruction block.

26. A computer processor comprising:

a plurality of multi-stage instruction processing compo-
nents that are configured to access and process instruc-
tions belonging to corresponding multiple distinct
instruction streams that are part of at least one instruc-
tion block, wherein the instruction block is associated
with an entry address and multiple distinct instruction
streams within the instruction block, wherein the mul-
tiple distinct instruction streams include at least a first
instruction stream and a second instruction stream, the
first instruction stream having a plurality of instructions
with an instruction order that logically extends in a
direction of increasing memory space relative to said
entry address, and the second instruction stream having
a plurality of instructions with an instruction order that
logically extends in a direction of decreasing memory
space relative to said entry address;

wherein the plurality of multi-stage instruction processing
components each include a program counter, an
instruction fetch unit and an associated instruction
buffer, which are configured to access and process in
parallel instructions belonging to the multiple distinct
instruction streams of a particular instruction block
stored in the memory system.

27. A computer processor according to claim 26, wherein:

the program counter of each respective multi-stage
instruction processing component has a configuration
that stores a memory address for an instruction belong-
ing to corresponding instruction stream of a particular
instruction block;

the instruction fetch unit of each respective multi-stage
instruction processing component has a configuration
that fetches at least one instruction belonging to the
corresponding instruction stream of the particular
instruction block; and

the instruction buffer of each respective multi-stage
instruction processing component has a configuration
that stores the at least one instruction fetched by the
instruction fetch unit of the respective multi-stage
instruction processing component.

28. A computer processor according to claim 26, wherein:

each respective multi-stage instruction processing com-
ponent further includes a decode stage and execution
logic that are configured to process the at least one
instruction stored in the instruction buffer of the respec-
tive multi-stage instruction processing component.

29. A computer processor according to claim 28, wherein:

the multiple distinct instruction streams of each instruc-
tion block comprise different classes of instructions;
and

the decode stage and the execution logic of each respec-
tive multi-stage instruction processing component are
configured to process instructions belonging to at least
one class of instructions for the instruction stream
associated with the respective multi-stage instruction
processing component.

30. A computer processor according to claim 26, wherein:

each respective multi-stage instruction processing com-
ponent further includes an instruction cache operably



US 9,513,920 B2

21

coupled to the instruction fetch unit of the respective
multi-stage instruction processing component, wherein
the instruction fetch unit of the respective multi-stage
instruction processing component has a configuration
that fetches a cache line from the instruction cache of
the respective multi-stage instruction processing com-
ponent for supply to at least the instruction buffer of the
respective multi-stage instruction processing compo-
nent.

5

10

22



