
Out-of-the-Box Computing 1 2013-08-23

Abstract –
Real-world programs often thrash in the instruction
cache, especially when SMT methods are used. The
Mill™ split-stream encoding doubles the effective
capacity of the instruction cache at no increase in per-
instruction power usage or cache access latency, while
also sharply increasing the potential maximal decode
rate for instruction sets that use variable-length
encoding.

Keywords: split-stream encoding, instruction cache,
instruction decode

Introduction
CPU architectures never have enough instruction

cache. Benchmarks and demos may fit, but real-
world workloads often thrash: each line loaded to
cache evicts another soon-needed line, and
program progress drops to L2 speeds. Yet cache
sizes cannot be increased; larger caches require
stronger drivers using more power, and the
greater distance to the decoder increases latency
or lowers clock rate.
Variable-length instruction encoding, as used in

the x86 architecture, can increase the effective
cache capacity by fitting more instructions into a
fixed cache byte size. However, variable-length
instructions are hard to parse; power, circuit area,
and time constraints conspire to limit parallel
variable-length parsing to 4 or 5 instructions.
Fixed-length encodings, as used on the Itanium
and RISC architectures, have no parallelism
constraints but are spendthrift of bits and are
quicker to thrash in cache.
Terminology used for instruction encoding in the

literature is inconsistent. As used here:

• An operation is the unit of execution, such as
an individual add, load, or branch.

• A bundle is the unit of physical encoding;
decoders receive bundles to decode.

• An instruction is the unit of logical encoding;
all actions of an instruction are semantically
performed together.

In many architectures a single chunk of bits
carries all three of these meanings: the bits are
both the logical and physical unit for decode and
carry only a single operation command. VLIW
and other wide-issue encodings pack several
operations into a single bundle that constitutes the
entire instruction. In the Itanium, bundles hold
exactly three operations, while an instruction may
contain a variable number of operations, and the
encoding of a single instruction may cross bundle
boundaries.
A Mill instruction comprises exactly two

variable-length bundles, each of which may
encode a large number of variable-length
operations. In addition, the encoding permits the
instructions to contain meta-data used to aid
decoding or execution of the operations.
Combining these and other innovations, the Mill

is able to decode over 30 operations per cycle,
five to ten times as many as contemporary legacy
architectures. This decode throughput is needed
for high-end members of the Mill family (which
also execute the operations at the same rate) when
software-pipelining a loop. Low-end Mill
members (with much less compute capacity) do
not need as much decode throughput but still
benefit from the increased cache capacity
provided by the same encoding methods.

Split-stream encoding
Imagine, as in Figure 1, an encoding in which

each instruction comprises a single bundle

The Mill: Split-stream encoding

Out-of-the-Box Computing

ootbcomp.com

Out-of-the-Box Computing 2 2013-08-23

program counter

…
Fig. 1

 …

 …

program counters

Fig. 2

containing two operations, and a program
comprises many sequences of these bundles
connected by flow-of-control operations. A two-
wide VLIW might use such an organization.
A sequence is entered at the head by a branch

from some other sequence, and will exit via
another branch after executing some portion of
the sequence. Sequences like this, with a single
entry point and possibly several exits, are
commonly called superblocks, extended basic
blocks or EBBs.

A branch operation contains the address of its
EBB target, so when a transfer occurs the decoder
knows where the target EBB begins and can start
decode of the first operation of the first bundle.
However, in variable-length encodings the
decoder does not know where the second
operation in that bundle begins, nor where the
following bundle begins. Hence the decoder must
first discover the length of the first operation
before it can begin decoding the following
operation, and must discover the lengths of both
operations before it can begin decode of the
following bundle.
Instruction decoders routinely discover the

length of an operation in a single cycle. To
discover two lengths, one after the other, is more
difficult, and more than two is impractical at
modern clock rates. Rather than parsing one
operation at a time, some CPUs contain several
different decoders and start one at each of several
possible operation boundaries before knowing
where the boundary actually is. Necessarily,
several of these decoders will be working on
misaligned bit sequences that aren't really an

operation. Later, when lengths are known, the
results of the misguided decoders are discarded
and only the results that started on the correct
boundary are kept and executed. This approach is
costly in power and chip area, but permits parallel
decode of sequences of up to five or so
operations.

It is necessary to reorganize the encoding to be
able to decode more operations per cycle. For
example, imagine that the program has been
reorganized as in Figure 2. What had been a

single sequence of two-operation bundles is now
two sequences of one-operation bundles. The first
new sequence comprises all the first operations of
the former bundles, and the second sequence
comprises all the second operations. The same
operations are present as before, merely
reorganized in memory.
A decoder for such an organization takes in one

bundle from each sequence every cycle, and may
be more clearly thought of as two decoders, one
for each sequence, that decode the two streams in
lock step. Each stream decoder need only
determine the length of a single operation to
locate the start of the following bundle, and has a
whole cycle to do so.
Similarly, splitting the EBB across two streams

may be more clearly thought of as splitting it into
two EBBs that are decoded in lock-step.
Obviously this approach will work for any degree
of splitting, not just into two. A stream of bundles
of seven operations could be split into seven
streams of one-operation bundles just as easily.
Note that each of the split streams has its own
program counter that contains the address of the

Out-of-the-Box Computing 3 2013-08-23

 …
 …

decode direction

program counters

Fig. 3

current bundle of that stream and will be
incremented to the address of the following
bundle.

Once the split decoders are started on a split
EBB, they can decode at full speed until the
program executes a taken branch. At that point,
the decoders must each be given the address of
the target of their split stream; for a two-way split
they need two target addresses, seven for a seven-
way split, and so on.
This presents a problem. While encoding two

target addresses in a branch operation is
marginally possible, the space occupied by the
second address would penalize the encoding
efficiency, and seven such addresses are quite out
of the question.
However, if the EBB is split exactly two ways,

then the two heads can share a single address, as
in Figure 3. The two EBB streams are butted

together head-to-head, with one stream extending
toward higher addresses and one extending
toward lower addresses. In this organization, a
branch operation contains a single target address
which applies to both streams. A transfer is to an
entry address located in between the two half-
EBBs. Once transferred, each decoder advances
by one bundle each cycle, both moving away
from each other in opposite directions. This is
split-stream encoding.

This bi-directional decode is of course limited to
two streams. Alternatively, it is possible to
support more than two streams with a single entry
point if the streams are all decoded in the same
direction and are interleaved cache line by cache
line in memory; stream one would use the first

line after the entry, stream two the second, and so
on, repeating round-robin fashion. Each decoder
could find its sequence of lines from the starting
entry point, and each sequence would be kept in
its own cache. However, it is unlikely that all the
streams would comprise the same number of
lines, so variations of stream length within and
EBB would lead to internal fragmentation of the
memory used.

While branch and function call operations target
a new EBB and need only a single target address
for both split streams, a return operation in split-
stream encoding must resume decode at the point
of call in two different streams. The call operation
saves two return addresses in the stack or other
structure, and the return operation restores the
decoders to those addresses.

If the operations are weighted by their difficulty
to decode and are evenly balanced across the two
streams then split-stream cuts the load on either
individual decoder in half. Actually, the difficulty
is cut by more than that when the instruction set
uses variable-length encoding, because cost of
decode is much worse than linear in the number
of operations to decode.

Moreover, if operations with similar encoding
requirements are assigned to the same stream,
then the bundle or operation formats can be
tailored to each stream, saving instruction space
and likely reducing decoding difficulty. For
example, all operations with an effective-address
parameter (including loads, stores, and branches)
can be assigned to one of the streams, so the logic
to decode an address is not needed in the other
decoder.

In conventional legacy architectures with a
single instruction stream, the instructions reside in
memory and are cached in a small, fast access
instruction cache that is all-too-frequently too
small for the working set of the program. In split-
stream encoding, the cache can be replicated so
that each stream has its own instruction cache.
If each of the split caches is the size of a single

conventional cache, then the pair provides double
the cache capacity for instructions. In addition, by
specializing the encoding format for each stream,
the average length of instructions can be reduced,

Out-of-the-Box Computing 4 2013-08-23

thereby increasing the effective cache capacity by
an amount that depends on the format details.
Having two caches does not increase latency

because each cache can be located near the
corresponding decoder just as a single cache
could be placed near the single decoder in a
conventional single-stream architecture. For the
same reason, power consumption per operation is
also unchanged by the split. The only cost for the
doubled cache capacity is the increase in chip area
for the second cache, which may cause a small
drop in chip yield.
Instruction caches are organized as a collection

of fixed-length cache lines, typically capable of
containing several instruction bundles. Because a
split EBB shares a common entry address across
both streams, the line containing the entry point
will be needed by both decoders when the EBB is
entered. A naive cache replacement policy would
cause the entry line to reside in both caches,
wasting space.

Instead, the entry line resides in only one of the
caches, as selected by the low-order significant bit
of the entry address. This effectively randomizes
the residence of the entry lines. When a branch
occurs, the target address determines which cache
is queried for the entry line, which is fed to both
decoders. Depending on the physical layout of the
caches and decoders, the entry line may take an
extra cycle to reach the non-local decoder. After
the entry line, subsequent lines are unshared and
reside only in the cache for their stream. Thus the
two caches can feed the decoders with minimum
latency.
The two caches should be of the same size if the

operations assigned to each stream produce
roughly similar demand for bytes. If the encoding
and/or operation assignment leads to imbalanced
demand then the two caches may have
appropriately different sizes. The larger may have
the same number of lines as the smaller but with a
larger line size, or may have more lines of the
same size. Which strategy will perform better in
practice depends on the details of the demand and
the structure of the memory hierarchy.

Each transfer to a new EBB will on the average
discard half a cache line (the bytes after the

branching bundle), which was fetched from
memory but is not part of the executed instruction
stream. In split-stream encoding there are two
such wasted half-lines. However, transfers in
single-stream encoding also waste half a line at
the target (the bytes before the entry point). This
is not wasted in split-stream encoding.
Consequently, both single- and split-stream
encodings waste two half-line fetches at each
transfer, although they are different half-lines.
Some legacy organizations place more than just

instructions in instruction memory (examples
include jump tables and alignment padding). This
metadata cannot be meaningfully decoded and so
cannot be in the instruction stream proper;
instead, it is placed after unconditional branches
or ahead of branch targets so that it is isolated
from regular control flow. When split-stream is
used, then such metadata can be placed at the
entry point between the two EBB heads so long as
it has a fixed known length or its size can be
determined quickly enough not to delay bundle
parsing.

Concrete example – the Mill
The Mill™ is a new general purpose CPU

architecture family oriented toward high single-
thread performance at minimal power
consumption. It is a wide-issue exposed-pipeline
machine, with sustained decode, issue, and
execute rates ranging from five to over thirty
MIMD operations per cycle. These rates would be
impossible using conventional instruction
encoding and decoding strategies.

The Mill uses split-stream encoding. One stream
is dedicated to operations that need large manifest
constants: loads and stores, flow of control, and
large (up to 128 bit) program constants. The other
stream comprises all ordinary arithmetic
operations, plus some operations unique to the
Mill.
Because operations with an address occupy

many more bits than simple arithmetic operations,
the byte demand on the caches of the two streams
is roughly equal despite there being many more
arithmetic operations than addressing operations.
Consequently the Mill uses equal sized instruction

Out-of-the-Box Computing 5 2013-08-23

caches for the two streams.

The Mill uses one byte of metadata at the EBB
entry line between the two stream heads. The byte
contains counts of the cache lines comprising
each of the two EBBs. These counts guide
prefetch of instruction cache lines, and prevent
the instruction fetcher from running off the end of
the EBB in the absence of correct branch
prediction.

Prior work
The decoupled access-execute architecture1
(DAE) used two logical instruction streams to
feed two execution engines which ran
asynchronously to each other and communicated
via hardware queues. Each stream could be
independently branched in the conceptual model,
with the ability of each processor to wait on a
branch in the other. However, in the physical
implementation in the Astranautics ZS-1, the
streams were physically interleaved with a single
branch for both. DAE differs from the methods
described here in that DAE has conceptually
asynchronous streams intended to hide memory
latency, whereas split-stream encoding has a
conceptually single stream that is split for
encoding efficiency and decode throughput.

• 1 Smith, J.E. "Decoupled access/execute computer

architectures", Computer Systems, ACM Transactions on;
Volume 2, Issue 4, November 1984, Pages 289-308.

