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Abstract –  
Real-world programs often thrash in the instruction 
cache, especially when SMT methods are used. The 
Mill™ split-stream encoding doubles the effective 
capacity of the instruction cache at no increase in per-
instruction power usage or cache access latency, while 
also sharply increasing the potential maximal decode 
rate for instruction sets that use variable-length 
encoding. 
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Introduction 
CPU architectures never have enough instruction 

cache. Benchmarks and demos may fit, but real-
world workloads often thrash: each line loaded to 
cache evicts another soon-needed line, and 
program progress drops to L2 speeds. Yet cache 
sizes cannot be increased; larger caches require 
stronger drivers using more power, and the 
greater distance to the decoder increases latency 
or lowers clock rate. 
Variable-length instruction encoding, as used in 

the x86 architecture, can increase the effective 
cache capacity by fitting more instructions into a 
fixed cache byte size. However, variable-length 
instructions are hard to parse; power, circuit area, 
and time constraints conspire to limit parallel 
variable-length parsing to 4 or 5 instructions. 
Fixed-length encodings, as used on the Itanium 
and RISC architectures, have no parallelism 
constraints but are spendthrift of bits and are 
quicker to thrash in cache. 
Terminology used for instruction encoding in the 

literature is inconsistent. As used here:  

• An operation is the unit of execution, such as 
an individual add, load, or branch.  

• A bundle is the unit of physical encoding; 
decoders receive bundles to decode.  

• An instruction is the unit of logical encoding; 
all actions of an instruction are semantically 
performed together. 

In many architectures a single chunk of bits 
carries all three of these meanings: the bits are 
both the logical and physical unit for decode and 
carry only a single operation command.  VLIW 
and other wide-issue encodings pack several 
operations into a single bundle that constitutes the 
entire instruction. In the Itanium, bundles hold 
exactly three operations, while an instruction may 
contain a variable number of operations, and the 
encoding of a single instruction may cross bundle 
boundaries. 
A Mill instruction comprises exactly two 

variable-length bundles, each of which may 
encode a large number of variable-length 
operations. In addition, the encoding permits the 
instructions to contain meta-data used to aid 
decoding or execution of the operations.  
Combining these and other innovations, the Mill 

is able to decode over 30 operations per cycle, 
five to ten times as many as contemporary legacy 
architectures. This decode throughput is needed 
for high-end members of the Mill family (which 
also execute the operations at the same rate) when 
software-pipelining a loop. Low-end Mill 
members (with much less compute capacity) do 
not need as much decode throughput but still 
benefit from the increased cache capacity 
provided by the same encoding methods. 

Split-stream encoding 
Imagine, as in Figure 1, an encoding in which 

each instruction comprises a single bundle 
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containing two operations, and a program 
comprises many sequences of these bundles 
connected by flow-of-control operations. A two-
wide VLIW might use such an organization.  
A sequence is entered at the head by a branch 

from some other sequence, and will exit via 
another branch after executing some portion of 
the sequence. Sequences like this, with a single 
entry point and possibly several exits, are 
commonly called superblocks, extended basic 
blocks or EBBs.  

A branch operation contains the address of its 
EBB target, so when a transfer occurs the decoder 
knows where the target EBB begins and can start 
decode of the first operation of the first bundle. 
However, in variable-length encodings the 
decoder does not know where the second 
operation in that bundle begins, nor where the 
following bundle begins. Hence the decoder must 
first discover the length of the first operation 
before it can begin decoding the following 
operation, and must discover the lengths of both 
operations before it can begin decode of the 
following bundle. 
Instruction decoders routinely discover the 

length of an operation in a single cycle. To 
discover two lengths, one after the other, is more 
difficult, and more than two is impractical at 
modern clock rates. Rather than parsing one 
operation at a time, some CPUs contain several 
different decoders and start one at each of several 
possible operation boundaries before knowing 
where the boundary actually is. Necessarily, 
several of these decoders will be working on 
misaligned bit sequences that aren't really an 

operation. Later, when lengths are known, the 
results of the misguided decoders are discarded 
and only the results that started on the correct 
boundary are kept and executed. This approach is 
costly in power and chip area, but permits parallel 
decode of sequences of up to five or so 
operations.  

It is necessary to reorganize the encoding to be 
able to decode more operations per cycle. For 
example, imagine that the program has been 
reorganized as in Figure 2. What had been a 

single sequence of two-operation bundles is now 
two sequences of one-operation bundles. The first 
new sequence comprises all the first operations of 
the former bundles, and the second sequence 
comprises all the second operations. The same 
operations are present as before, merely 
reorganized in memory. 
A decoder for such an organization takes in one 

bundle from each sequence every cycle, and may 
be more clearly thought of as two decoders, one 
for each sequence, that decode the two streams in 
lock step. Each stream decoder need only 
determine the length of a single operation to 
locate the start of the following bundle, and has a 
whole cycle to do so.  
Similarly, splitting the EBB across two streams 

may be more clearly thought of as splitting it into 
two EBBs that are decoded in lock-step. 
Obviously this approach will work for any degree 
of splitting, not just into two. A stream of bundles 
of seven operations could be split into seven 
streams of one-operation bundles just as easily. 
Note that each of the split streams has its own 
program counter that contains the address of the 
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current bundle of that stream and will be 
incremented to the address of the following 
bundle. 

Once the split decoders are started on a split 
EBB, they can decode at full speed until the 
program executes a taken branch. At that point, 
the decoders must each be given the address of 
the target of their split stream; for a two-way split 
they need two target addresses, seven for a seven-
way split, and so on.  
This presents a problem. While encoding two 

target addresses in a branch operation is 
marginally possible, the space occupied by the 
second address would penalize the encoding 
efficiency, and seven such addresses are quite out 
of the question.  
However, if the EBB is split exactly two ways, 

then the two heads can share a single address, as 
in Figure 3. The two EBB streams are butted 

together head-to-head, with one stream extending 
toward higher addresses and one extending 
toward lower addresses. In this organization, a 
branch operation contains a single target address 
which applies to both streams. A transfer is to an 
entry address located in between the two half-
EBBs. Once transferred, each decoder advances 
by one bundle each cycle, both moving away 
from each other in opposite directions. This is 
split-stream encoding. 

This bi-directional decode is of course limited to 
two streams. Alternatively, it is possible to 
support more than two streams with a single entry 
point if the streams are all decoded in the same 
direction and are interleaved cache line by cache 
line in memory; stream one would use the first 

line after the entry, stream two the second, and so 
on, repeating round-robin fashion. Each decoder 
could find its sequence of lines from the starting 
entry point, and each sequence would be kept in 
its own cache. However, it is unlikely that all the 
streams would comprise the same number of 
lines, so variations of stream length within and 
EBB would lead to internal fragmentation of the 
memory used. 

While branch and function call operations target 
a new EBB and need only a single target address 
for both split streams, a return operation in split-
stream encoding must resume decode at the point 
of call in two different streams. The call operation 
saves two return addresses in the stack or other 
structure, and the return operation restores the 
decoders to those addresses. 

If the operations are weighted by their difficulty 
to decode and are evenly balanced across the two 
streams then split-stream cuts the load on either 
individual decoder in half. Actually, the difficulty 
is cut by more than that when the instruction set 
uses variable-length encoding, because cost of 
decode is much worse than linear in the number 
of operations to decode.  

Moreover, if operations with similar encoding 
requirements are assigned to the same stream, 
then the bundle or operation formats can be 
tailored to each stream, saving instruction space 
and likely reducing decoding difficulty. For 
example, all operations with an effective-address 
parameter (including loads, stores, and branches) 
can be assigned to one of the streams, so the logic 
to decode an address is not needed in the other 
decoder.  

In conventional legacy architectures with a 
single instruction stream, the instructions reside in 
memory and are cached in a small, fast access 
instruction cache that is all-too-frequently too 
small for the working set of the program. In split-
stream encoding, the cache can be replicated so 
that each stream has its own instruction cache.  
If each of the split caches is the size of a single 

conventional cache, then the pair provides double 
the cache capacity for instructions. In addition, by 
specializing the encoding format for each stream, 
the average length of instructions can be reduced, 



Out-of-the-Box Computing 4 2013-08-23 

thereby increasing the effective cache capacity by 
an amount that depends on the format details.  
Having two caches does not increase latency 

because each cache can be located near the 
corresponding decoder just as a single cache 
could be placed  near the single decoder in a 
conventional single-stream architecture. For the 
same reason, power consumption per operation is 
also unchanged by the split. The only cost for the 
doubled cache capacity is the increase in chip area 
for the second cache, which may cause a small 
drop in chip yield. 
Instruction caches are organized as a collection 

of fixed-length cache lines, typically capable of 
containing several instruction bundles. Because a 
split EBB shares a common entry address across 
both streams, the line containing the entry point 
will be needed by both decoders when the EBB is 
entered. A naive cache replacement policy would 
cause the entry line to reside in both caches, 
wasting space.  

Instead, the entry line resides in only one of the 
caches, as selected by the low-order significant bit 
of the entry address. This effectively randomizes 
the residence of the entry lines. When a branch 
occurs, the target address determines which cache 
is queried for the entry line, which is fed to both 
decoders. Depending on the physical layout of the 
caches and decoders, the entry line may take an 
extra cycle to reach the non-local decoder. After 
the entry line, subsequent lines are unshared and 
reside only in the cache for their stream. Thus the 
two caches can feed the decoders with minimum 
latency. 
The two caches should be of the same size if the 

operations assigned to each stream produce 
roughly similar demand for bytes. If the encoding 
and/or operation assignment leads to imbalanced 
demand then the two caches may have 
appropriately different sizes. The larger may have 
the same number of lines as the smaller but with a 
larger line size, or may have more lines of the 
same size. Which strategy will perform better in 
practice depends on the details of the demand and 
the structure of the memory hierarchy.  

Each transfer to a new EBB will on the average 
discard half a cache line (the bytes after the 

branching bundle), which was fetched from 
memory but is not part of the executed instruction 
stream. In split-stream encoding there are two 
such wasted half-lines. However, transfers in 
single-stream encoding also waste half a line at 
the target (the bytes before the entry point). This 
is not wasted in split-stream encoding. 
Consequently, both single- and split-stream 
encodings waste two half-line fetches at each 
transfer, although they are different half-lines.  
Some legacy organizations place more than just 

instructions in instruction memory (examples 
include jump tables and alignment padding). This 
metadata cannot be meaningfully decoded and so 
cannot be in the instruction stream proper; 
instead, it is placed after unconditional branches 
or ahead of branch targets so that it is isolated 
from regular control flow. When split-stream is 
used, then such metadata can be placed at the 
entry point between the two EBB heads so long as 
it has a fixed known length or its size can be 
determined quickly enough not to delay bundle 
parsing. 

Concrete example – the Mill 
The Mill™ is a new general purpose CPU 

architecture family oriented toward high single-
thread performance at minimal power 
consumption. It is a wide-issue exposed-pipeline 
machine, with sustained decode, issue, and 
execute rates ranging from five to over thirty 
MIMD operations per cycle. These rates would be 
impossible using conventional instruction 
encoding and decoding strategies. 

The Mill uses split-stream encoding. One stream 
is dedicated to operations that need large manifest 
constants: loads and stores, flow of control, and 
large (up to 128 bit) program constants. The other 
stream comprises all ordinary arithmetic 
operations, plus some operations unique to the 
Mill. 
Because operations with an address occupy 

many more bits than simple arithmetic operations, 
the byte demand on the caches of the two streams 
is roughly equal despite there being many more 
arithmetic operations than addressing operations. 
Consequently the Mill uses equal sized instruction 
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caches for the two streams. 

The Mill uses one byte of metadata at the EBB 
entry line between the two stream heads. The byte 
contains counts of the cache lines comprising 
each of the two EBBs. These counts guide 
prefetch of instruction cache lines, and prevent 
the instruction fetcher from running off the end of 
the EBB in the absence of correct branch 
prediction. 

Prior work 
The decoupled access-execute architecture1 
(DAE) used two logical instruction streams to 
feed two execution engines which ran 
asynchronously to each other and communicated 
via hardware queues. Each stream could be 
independently branched in the conceptual model, 
with the ability of each processor to wait on a 
branch in the other. However, in the physical 
implementation in the Astranautics ZS-1, the 
streams were physically interleaved with a single 
branch for both. DAE differs from the methods 
described here in that DAE has conceptually 
asynchronous streams intended to hide memory 
latency, whereas split-stream encoding has a 
conceptually single stream that is split for 
encoding efficiency and decode throughput. 
                                                
• 1 Smith, J.E. "Decoupled access/execute computer 

architectures", Computer Systems, ACM Transactions on; 
Volume 2, Issue 4, November 1984, Pages 289-308.  


