Difference between revisions of "Instruction Set/neg"

From Mill Computing Wiki
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 1:Line 1:
 
{{DISPLAYTITLE:neg}}
 
{{DISPLAYTITLE:neg}}
<div style="font-size:80%;line-height:90%;margin-bottom:2em">[[Speculation|realizing]]&nbsp;&nbsp;[[Encoding|exu stream]]&nbsp;&nbsp;[[Decode|exu block]]&nbsp;&nbsp;[[Phasing|compute phase]]&nbsp;&nbsp; operation&nbsp;&nbsp; [[Domains|in the logical value domain]]&nbsp;&nbsp; [[Condition Code|that produces condition codes]]<br />
+
<div style="font-size:80%;line-height:90%;margin-bottom:2em">[[Speculation|speculable]]&nbsp;&nbsp;[[Encoding|exu stream]]&nbsp;&nbsp;[[Decode|exu block]]&nbsp;&nbsp;[[Phasing|compute phase]]&nbsp;&nbsp; operation&nbsp;&nbsp; [[Domains|in the logical value domain]]&nbsp;&nbsp; [[Condition Code|that produces condition codes]]<br />
 
'''aliases:''' negs negsv <br />
 
'''aliases:''' negs negsv <br />
 
'''native on:''' [[Cores|all]]<br />
 
'''native on:''' [[Cores|all]]<br />
 
</div>
 
</div>
  
negate
+
Integer arithmetic negation. Modulo overflow.
 +
 
 +
For arithmetic negation in two complement values the only value that can overflow is the smallest possible number for the width. In modulo overflow it remains the same value.
 +
 
 +
 
 +
 
 +
 
 
----
 
----
 
<code style="font-size:130%"><b style="color:#050">neg</b>(<span style="color:#009">[[Domains#op|op]]</span> <span title="belt operand from ops window">x</span>) &#8594; [[Domains#op|op]] r<sub>0</sub></code>
 
<code style="font-size:130%"><b style="color:#050">neg</b>(<span style="color:#009">[[Domains#op|op]]</span> <span title="belt operand from ops window">x</span>) &#8594; [[Domains#op|op]] r<sub>0</sub></code>

Latest revision as of 09:33, 9 February 2015

speculable  exu stream  exu block  compute phase   operation   in the logical value domain   that produces condition codes

aliases: negs negsv
native on: all

Integer arithmetic negation. Modulo overflow.

For arithmetic negation in two complement values the only value that can overflow is the smallest possible number for the width. In modulo overflow it remains the same value.




neg(op x) → op r0

operands: like Identity [xx:x]


Core In Slots Latencies
Tin E0 1
Copper E0 E1 1
Silver E0 E1 E2 E3 1
Gold E0 E1 E2 E3 E4 E5 E6 E7 1
Decimal8 E0 E1 E2 E3 1
Decimal16 E0 E1 E2 E3 1


Instruction Set, alphabetical, Instruction Set by Category, Instruction Set, sortable, filterable