a2 United States Patent

Godard et al.

US009513904B2

US 9,513,904 B2
Dec. 6, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

COMPUTER PROCESSOR EMPLOYING
CACHE MEMORY WITH PER-BYTE VALID

BITS

Applicant: Mill Computing, Inc., Palo Alto, CA
(US)

Inventors: Roger Rawson Godard, East Palo
Alto, CA (US); Arthur David Kahlich,
Sunnyvale, CA (US)

Assignee: MILL COMPUTING, INC., Palo Alto,
CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 185 days.

Appl. No.: 14/515,178
Filed: Oct. 15, 2014

Prior Publication Data

US 2015/0106567 Al Apr. 16, 2015

Related U.S. Application Data

Provisional application No. 61/890,891, filed on Oct.
15, 2013.

Int. CL.

GO6F 9/30 (2006.01)

GO6F 12/08 (2016.01)
(Continued)

U.S. CL

CPC ... GOGF 9/30032 (2013.01); GOGF 9/30145
(2013.01); GOGF 12/0292 (2013.01);

(Continued)
Field of Classification Search
CPC oo GO6F 12/00; GO6F 12/08

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,542,058 A * 7/1996 Brown, III GOGF 9/383
712/23
5,809,320 A * 9/1998 Jaincccceeveen GOG6F 9/3857
712/34

(Continued)

OTHER PUBLICATIONS

A Primer on Memory Consistency and Cache Coherence, Daniel J.
Sorin et al., Morgan & Claypool Publishers, Synthesis Lectures on
Computer Architecture, 2011.

Primary Examiner — Ryan Bertram
(74) Attorney, Agent, or Firm — Gordan & Jacobson, P.C.

(57) ABSTRACT

A computer processing system with a hierarchical memory
system that associates a number of valid bits for each cache
line of the hierarchical memory system. The valid bits are
provided for each cache line stored in a respective cache and
make explicit which bytes are semantically defined and
which are not for the associated given cache line. Memory
requests to the cache(s) of the hierarchical memory system
can include an address specifying a requested cache line as
well as a mask that includes a number of bits each corre-
sponding to a different byte of the requested cache line. The
values of the bits of the byte mask indicate which bytes of
the requested cache line are to be returned from the hierar-
chical memory system. The memory request is processed by
the top level cache of the hierarchical memory system,
looking for one or more valid bytes of the requested cache
line corresponding to the target address of the memory
request. The valid bytes of the cache line corresponding to
the byte mask as stored in cache can be identified by reading
out the valid bit(s) and data byte(s) stored by the cache for
putative matching cache lines for those data bytes that are
specified by the byte mask of the memory request, while
ignoring the valid bit(s) and data byte(s) stored by the cache
for putative matching cache lines for those data bytes that
are not specified by the byte mask of the memory request.
Extensions to shared multiprocessor systems is also
described and claimed.

28 Claims, 13 Drawing Sheets

! Byte mask

BankID | Byte offset
{2 bits} (2 bits)

Tag Index
{4 birs) {49 bits) (12 bits}
= |

Cache Linz of 4 bytes

v Dsta D
Row Tag ppe bytes bit
indec {48) () (32) (O

Way o Way1

v ata D
TaE i bytes bit Tag pus bytes hit
s} g 3)) @ By

Bank Select
Way2 Way3

Dea D v Daa D
TEE b bytes bit

9 g 62 @

| B E

Rl s e e |

2 =t =
50
#
| e L
Loy L™ b
Fér- Per- Per- Per-
byta A ove byte & byte
58| HM H/M HiM H/M
Fer-dylm HitDsts phi Par-Bye HitDawm ppy PerByte HRDWMD ppip PerBpte HItDA ppy
/M B wayo WM Bz wayy WM Bt wa2 WM Bvies way3
way B way 0 Way 1 way2 wayz wayd
(inputs to (inpus tw (oputsts (s OMAM (npumto (nputs s Outpet
H/M OR Logly/ W) Log! [Mur) Logi uz)
Control inputs Control Inputs Lontral Inputs Control aputs
ta Dutput to Output o Qutput o Output
Mur} Mux) Muxp Mux)

US 9,513,904 B2

Page 2
(51) Int. CL 9,047,197 B2* 6/2015 Chou
GO6F 12/02 (2006.01) 2003/0033480 Al* 2/2003 Jeremiassen G06F7§/14/411411§
GO6F 12/10 (2016.01) 2003/0126369 Al* 7/2003 Cretacccooevnee. GOGF 12/0804
(52) US. CL 711/133
CPC ... GO6F 12/0811 (2013.01); GO6F 12/0864 2004/0103251 Al 5/2004 Alsup
(2013.01); GOGF 12/0893 (2013.01); GOGF 2006/0053254 Al* 3/2006 Van Eijndhoven . GOGF %O/Efg;
12/1027 (2013.01); GO6F 12/0897 (2013.01); 2006/0059309 AL* 3/2006 Harada ... GOG6F 12/0893
GOGF 12/1009 (2013.01); GOSE 2212/1024 711/118
(2013.01); GO6F 2212/1028 (2013.01); GO6F 2009/0106495 Al1* 4/2009 Chouccco.o..... GOGF 9/3004
2212/283 (2013.01); GOG6F 2212/608 711/130
(2013.01); GOGF 2212/6032 (2013.04); GO6F 2010/0077151 Al1* 3/2010 Van De Waerdt .. GO6F ﬁ/l(;flﬁgzzt
22]2/684 (2013'01); YOZB 60/]225 (2013'01) 2010/0299484 Al* 11/2010 Hooker G06F 12/0844
. 711/125
(56) References Cited 2011/0307663 Al* 122011 Kultursay GOGF 17/5045
711/125
U.S. PATENT DOCUMENTS 2012/0246410 Al 9/2012 Xu
N 2013/0042076 Al 2/2013 Lu et al.
6,240,508 Bl 5/2001 Brown, III GOG6F 9/383 2014/0032857 Al 1/2014 Rajagopalan et al.
710/39 2014/0122810 Al 5/2014 Bhoria et al.
7,757,044 B2 7/2010 Cypher et al.
8,347,034 Bl 1/2013 Chen et al. * cited by examiner

US 9,513,904 B2

Sheet 1 of 13

Dec. 6, 2016

U.S. Patent

2914
2ReY -« snoaxy oNSs| « apooe(yoe4
I 9Old
|
|
“ »{ 9160 aupeyuopnaaxg
v
1 Lol
I 1
1
| o oo
_ /
” 1 E
| Jayng uoRansu|
_ ud
_ 1
]
t
I A wnuoeduopnisy e
| 40l
“ F.
i
— r A
I _ suaeq eieq 11 _ _ ayoro uopomisy| 1] _
| e i 1
P 21
gy .
| il _ ayoes 71 _
e .H llllllllllllllllllll
A9
| P waisAg Asowapy 2102/NdD
|o

US 9,513,904 B2

Sheet 2 of 13

Dec. 6, 2016

U.S. Patent

€'9Old
et aiboq
al1ay/uonnosaxg
= e e e
|
1
1
" 3IoMla]N 108LLcDIB|
i 1||r lllllll ul\”}llll.ll.all—ll.l.ll.lﬂs\lw . o » ,Al.ll.ullu
i] * ¥ % ~%
1 | N ~ AN N\
A AN N h Y

“ ! _ (o114 1°1=1Bey Jo yog 'He) sjusweg abelnaig pueiado
i “ A FY A % A
! I
1 i
i |
i | NNd (=] ¥Nd €nd Znd LNd
! I
! i S £ 4 p] 7
!] / / / / /
i / / /

] \\\l \\\l . N -~
i Eiatalab A okttt) e S s < W bkl <A
1
1

US 9,513,904 B2

Sheet 3 of 13

Dec. 6, 2016

U.S. Patent

[

(sn4d Jo ebelolg pueiadQ wody)
MIOMISN 108UL0DISIU|

.......................... ~---

01607 amey/uonnoexg

¥ "old
ol
| Aowsyy uep
< ayoen 71
£ i
\\.
< . ayoen ejeq |1
A A
1senbey 15anbay
eleq peissnbay peoT 8I01Q
| puden i e e ey el paae i el e e e e B ..—
]
_ v "
! (s)uonelg [
N cnt] aley
| _50h "
_ P 04 &0k _
| (snd 1o £ . _
] abelolg puesedg o3)
| JJOMIBN Joauuocaieiu| nun peo] nun ai0ig “
“ |
| _
_ I
|

US 9,513,904 B2

Sheet 4 of 13

Dec. 6, 2016

U.S. Patent

(xniy {xniy (xnw (o V39 '9l4
Inding o3 ndanp 03 nding 03 nding 03
sinduj joJjued sindu) josuo) syndu) jofuo) sinduy josjua)
(xning /2180190 W/H (xni /2180740 W/H {xniN /91807 50 W/H (xniy /21807 4O W/H
nding o3 sinduy) cysindur) ndinp 03 sindwy) oy sindu)) Indang 03 spnduy) 03 syndu)) ndinp 03 synduy) 03 synduj)
€ Aem £ Aem z Aep zAem T AEM T Aep 0 ke pAem
EABM smAg WH Them sqyég WH TAM saisg W/H ohem sayag W/
W4 elequH ag-;ed 90 eeguy 9lkgtad W4T emeaud akg-)ed WAA eegud ahg-1ad
A A % ﬁ A * A »
W/H WH | . W/H |, W/H | 508
g s > g 3 W,E] g)
-13d] -13d -13d -13d
Y k \ A
{E3edl _Ald | ZEG]| J {=3eq] J \ﬁ\ﬁpmo_ Jt—
408” % A o5’ B A w7 A4 L I
G : S e
= = = kl
105 K 405" 8 405 4 s K
= e = = 8
[]
!
/
- Jopaas
f
0
T (ze) B (gn) m (ze) W (G (1 (zg) () (gp) (1) (e8) &) (sp) xepu
uq ssAq SHA gey g salkg SHA gep ng saikq SHO gey Hg s9Ag SHY ge) moy
¢ eieqg A a €ieqg A g elg A a eweq A
g Aepn z Aepp T AEM 0 ABAA
10996 yueg
s31AG ¥ JO U 3yae) Ay _ _
(sug2) (suqz) (suq1T) (suq &) (sudq v)
19sy0 a3Ag QI jueg Xapuj ey ysew aAg

US 9,513,904 B2

Sheet 5 of 13

Dec. 6, 2016

U.S. Patent

aur] ayoe)
poisanbas
8yl 1o}
SSIN/3H
£ 2Ag

£ Aepp 0 Aemy
W/H W/H
£ 3ikg € alAg

45 'Did

auri ayoed
paisenbau
a1 404
SSIA/HH
T 91Ag

£ Aep 0 Aem
W/H W/H
7 91g T o1Ag

aur aysed
paisanbay
ay1Joy
SSIAI/UH
T 31kg

£ Aem
W/H
T 91Ag

0 Aep
W/H
T 214

aury ayoed
paisanbad
a3 Joyg
SSIA/HH
031

A

€ Aem 0 Aem
W/H W/H
031ig 0 @1g

US 9,513,904 B2

Sheet 6 of 13

Dec. 6, 2016

U.S. Patent

J9 9l
auj7 ayoe) peisenbal 3uf] syze) paisanbal
10§ 11q ALIp M 10} {s)a1Ag e1eg HH
, Pba7
LAz)
€ Aep N/H 33Ag-Jad
2 T—
A|I
XN 19-d Xnpy\ 2)4g e1eg
AII
A-l[
0 Aem N/H 21Aa-12d
A g Aepy zhem T Aem D Aem
€ fem 2 Aem TAeM 0 AEM {s}orig (slexlg (serg (s)endg
uga uaa nqa ugQ ereq e1eq e1eq zeq

UH HH AH HH

US 9,513,904 B2

Sheet 7 of 13

Dec. 6, 2016

U.S. Patent

9 '0Id

layng opiseyoo

bog- uonoejoid Jayng wioin
409~
]
l

|

obeioig

ebelo}s aur] syoeg obeioyg Be; | sug pieams Auig

(%
O_cmmvv\ﬁmwi ayoen

(99 01607 Buissanoid o160 Buisseooid
Je|loluon }sanbay al0)1g 1senbay peoT
ayoen
207 A jo9~ A
D
p—r
ayoen ele 11 1senbey isenbay
2l0)g peo

ot e ——— e o e At o ot — et i oo o]

U.S. Patent Dec. 6, 2016 Sheet 8 of 13 US 9,513,904 B2

v /"fvf

extract line address and byte mask
from load request; can also derive line
address and byte mask from a byte
address and length specified in load
reguest

Tor any valid requested byte(s)
of cache line (based on
byte mask)?

5

¥ yd
Return the requested byte(s) that hit in
the Victim Buffer to the execution/
retire logic for merger, if need be

TV

2

identify LRU cache line corresponding
to the requasted cache line address

| p
+ 70
Swap the valid requesied byte(s) of
Cache Line as stored in the Victim
Buffer with the LRU cache line
corresponding to the requesied cache

line address
T

fio bytes remaining for the
requast (based on
byte mask)?

FIG. 7A

US 9,513,904 B2

Sheet 9 of 13

Dec. 6, 2016

U.S. Patent

ues|3
SE JJBW pue AELY ayDED) SU] JO 2UH 3YdoeI B 0)U] AJoWiaLu
10 [3A8] J2MO] PHBU WO} paulnial (5)33Ag aul} ayoed alpn

h 4

-~

¥ 4

e (palysnes jiiun 1sypn) palamo| 3sanbal
2U31.J0) punoy y ‘|ans| 1omo| 1xau ay3 Aq oifo} uonniaxa
2y} 01 pauInial osje PUB [aA3| JDMO] Jxau a3 Ag ayoaea

Ae.ly ayae) ay1 jo suy ayoea Juapisal
a1 01U} AIOWSBLW JO [3nB] Jamo] Ixau
wouj paulniad (s)a3Aq sulj syoed adiay

ay1 01 pe1sioy 2J4E 531Aq 859Y] ‘AJOWBL JO [9AB| JEMO] DEU
03 sa3iq suy aysed pajsanbal alyl o || 10} 1S9nbas pead anss|

. Q\W.\ N

(paysires jrun

Jayun} paiamoj 3sanbal a3 1o)
pUnoy §i ‘[aAR] Jamoy) 1xau syl Aq
2180| uoINaaXa 243 0} paUIN}ad
OS[e pUe [2A3] JOMO| 1XBU

-~
4t _ V+A]
ag paau I 1edlaw
124108 WAMA 105 AJowsw Jo [aAa) Jamo|
01 auj] ayoea 1y ayl Ada) IXBU 0} Jang WHIDIA wolj auy
aYIea My7 40 seihq eiep pijea
ot E Jamoj 03 35anbal aym anss)
!) , R4
A el

ssalppe palsenbal
3y3 03 Buipuodsa.liod
U1 3yoea Ny Ayuapl
a BLU 31Aq UD padey

3Ul} 3yaed 4o (s)alAq parsanbal e
ArLIY BYOED PUE JaYNG WA
U} S| —SS]U |0

bt

53A

ON
4.5

31 Aq ayae) su1 03 pasjoy aJe
531Aq asay) ‘AeLly ayde] sy
pue Jajng WH3IA 3y yioq ui

passiw jeys (s)oiAq paisanhal
lie 4oy AlOWBW Jo [9AB] JAMO]
1xeu 0).158nba. peaJ anss|

&
s

40,

A
o

&

UN

(ysew

3q pasu 4 981aw aoy 2180]

atflal/uonnoexe oy Aely
ayaed ayz uj 3y 1eys (s)e1hq
paisanbal pijea winiay

¥

SOA

US 9,513,904 B2

Sheet 10 of 13

Dec. 6, 2016

U.S. Patent

[2AB] JoMo] BY3 uj Ya) 5!
3uyj syoes jeulSiio 3y} ‘UBI|O PAyJEW PUE pieald
51 9Uj| IYIBI M3BU B 3SIMIBYIO0 {SISIXD U0 Ji
aAOQE 3UJ] 3YOEI BY] 4O S3IAG ElEP pijeAus oejdal
3ul ayoed palsioy ay} wiod) SalAg Blep pljea
‘paisioy a.e Sa1AG EIEP PI|EA |[E - BlB(Q UJNI3Y

NdJ 40 21807 8418y /uopnaaxg o

8O

{ayoe) eieq 17 2yl wodi Aeme)
WalsAs Alowd] JO YIE) [2AST] JaMO]

1sonboay
pesy

(01807 84138y
Juoinoaxg pue ayoe) eieq T piemoi}
w21sAS Alowapy Jo ayoe] [2A3) JaySIH

US 9,513,904 B2

Sheet 11 of 13

Dec. 6, 2016

U.S. Patent

6914 N3
. lag.
Ll Ll |
ues|? se yJeu pue Aely 8Ude] BY3 4O Buj| BYIed
Fuipuodsa.Liod B 03Ul Ja4Nng WIIDIA Ul PRJ03s Se Bu||
31| 3Y2ED PADIAR UES)D ALp} ay2ed mau syl 4o (s)alAg elep pljen aim Algissod
SUHLIMIBAO SNLA ‘AUl ALIED Y] 3L 15 4.,
UM Jeng WA SY3 U) PRUoIs SB au|
aU7ED MaU 33 0 (5)23Aq pijeA a3 dems 3q paau 4| 19519 W Joy A1 40 [3AB] JBMO]
1HBU 01 Jayng WIIDIA WOL aul| 34IEd MY ay3
m\ﬁ_\ 10 5934 B1ED pi{EA B3 J2M0| 03 153NDBJ 21LIM SNSS|
£ 3

Jagng
WIHDIA 943 Ul PRJ0IS Blep BY3

01 UsAld Aliond yim ‘Aeile ayoed
Y1 ul aul] 3ysed Sujpuodsaliod

10 s31Aq 21D pljEA BYl yHm
Ja4ng WIoIA Ul pRUols se auy)
2Yzed JO 5834 BlER pljen 933N

A

7
Al

ip 934q 3l

ayses 1] SIA

ssalppe auy| ayses parsanbal
8y} 03 Suipuodsaslod aul| BYIeI NYT Ajluap]

éauy| ayoed

1

pue ss3.ppe 33Aq B WO} PII0IS a0 01 S31AQ RIEP pUE YSBLU DJAQ PUE S524pPE BUY| DAMSBP
OS|e UBI [153nbal 8401 WO PRI0IS 3 01 SaIAQ BIBP pUE YSeW 91AQ pue ssaippe aul| 1vesxg

1sanbau alo3s up payoeds yiBus)

1%

NID34

US 9,513,904 B2

Sheet 12 of 13

Dec. 6, 2016

U.S. Patent

01 'Ol

{ayoe) ejeq 17 2y3 oy Aeme)
wIsAs MOWIA JO BYIE) [9AST JOMOT

‘UB3[2 payJEW pUE [9A3]
Jaddn 3y u1 ys| st suy| |euiBuo ay) ‘Auip
pacjJewl PUB paleatd S BUlj MBU B 10 ‘MOJ3q
|[3A3| 3y1 ul au)] ayded Suipuodsatiod

Aue 311lUMIBA0 SBIAQ pljeA BY] "paiamo

9.e 5914q e1ep pljea pue Auip |y

4

A

1sanbay a1

(01807 auney
Juonndaxg pue ayse) eie(17 piemol)
wa1sAs Atowa o ayse) jana] 1aydiH

US 9,513,904 B2

Sheet 13 of 13

Dec. 6, 2016

U.S. Patent

11 'Ol

dIHD H0SS300dd FJHOIILTINA

Z 310D

gzl

|
I
|
I {
I it O\\a “\wo\
|
] ayoe)y ayoe)
! , e
o _ 171 71 31eAMd ejeq 17 93eALld
) _ : Y K
|
_ A A
Aoway i J3jjosuo)
ue pateys (€ 1] Aowspy Tvm PHOMIBN 13UU0aI33u|
| / A A
!]
| oy v
]
| ayoe) ayae)
“ Z191end eleq 17 21eALd
" =~ e
A sréorl yeoil
joll "1

US 9,513,904 B2

1
COMPUTER PROCESSOR EMPLOYING
CACHE MEMORY WITH PER-BYTE VALID
BITS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present disclosure claims priority from U.S. Provi-
sional Patent Appl. No. 61/890,891, filed on Oct. 15, 2013,
entitled “Cache Support for a Computer Processor,” herein
incorporated by reference in its entirety.

BACKGROUND

1. Field

The present disclosure relates to computer processors
(also commonly referred to as CPUs).

2. State of the Art

A computer processor (and the program which it
executes) needs places to put data for later reference. A
computer processor design will typically have many such
places, each with its own trade off of capacity, speed of
access, and cost. Usually these are arranged in a hierarchal
manner referred to as the memory system of the processor,
with small, fast, costly places used for short lived small data
and large, slow and cheap places used for what doesn’t fit in
the small, fast, costly places. The memory system typically
includes the following components arranged in order of
decreasing speed of access:

register file or other form of fast operand storage;

one or more levels of cache memory (one or more levels
of the cache memory can be integrated with the processor
(on-chip cache) or separate from the processor (off-chip
cache);

main memory (or physical memory), which is typically
implemented by DRAM memory and/or NVRAM memory
and/or ROM memory;

controller card memory; and

on-line mass storage (typically implemented by one or
more hard disk drives).

In many computer processors, the main memory of the
memory system can take several hundred machine cycles to
access. The cache memory, which is much smaller and more
expensive but with faster access as compared to the main
memory, is used to keep copies of data that resides in the
main memory. If a reference finds the desired data in the
cache (a cache hit) it can access it in a few machine cycles
instead of several hundred when it doesn’t (a cache miss).
Because a program typically has nothing else to do while
waiting to access data in memory, using a cache and making
sure that desired data is copied into the cache can provide
significant improvements in performance.

The cache granularity (the cache line) is chosen to opti-
mize the transfer of data from external memory to and from
cache memory. Typical cache line sizes are 32 or 64 bytes,
significantly larger than the granularity of program access to
data, which is commonly one to eight bytes.

The mismatch of granularity is not usually significant for
loads of data. If the desired data is not found in cache, then
the whole containing line is brought in from external
memory and the load is satisfied from the relevant portion of
the line. A subsequent load may reference a different part of
the line and be satisfied rapidly from cache without another
access to external memory. Similarly, a store to a location
that is already resident in cache may be performed quickly
by updating the cache line, without sending the new data
values to the external memory.

15

20

30

40

45

50

55

2

However, stores to lines that are not cache resident (write
misses) present a problem. If a store miss allocates a new
line in cache and updates it with the stored value then the
granularity disparity means that there will be unwritten bytes
in the line. Such remaining unwritten bytes of the line have
undefined value, and a subsequent load to the undefined
portion would not return a correct value to the CPU core.

There are two well-known methods to avoid this write-
miss problem. In the write-through method, all stores that do
not hit in cache are sent to external memory without allo-
cating a cache line, and cache lines are only allocated by a
load. In the write-back method, store misses cause the target
line to be read from external memory in the same way as a
load, whereupon it can be updated with the stored value as
if there had been no miss.

Each of these two methods can cause the program to incur
significant costs. In the write-through method, multiple write
misses to the same line increases traffic to external memory
as each is written through. The extra traffic may be avoided
by use of buffers that combine multiple stores to the same
line, but then these must be checked in the same way as is
needed for the write-back method, with the same power and
complexity costs. In the write-back method case, the store
value must be buffered until the desired line is read from
external memory, and the buffer must be checked by sub-
sequent loads and stores to provide semantically consistent
behavior in the case of overlapping access; the buffering and
checking is expensive in power

SUMMARY OF THE INVENTION

This summary is provided to introduce a selection of
concepts that are further described below in the detailed
description. This summary is not intended to identify key or
essential features of the claimed subject matter, nor is it
intended to be used as an aid in limiting the scope of the
claimed subject matter.

Tustrative embodiments of the present disclosure are
directed to a computer processing system with a hierarchical
memory system that associates a number of valid bits for
each cache line of the hierarchical memory system. The
valid bits are provided for each cache line stored in a
respective cache and make explicit which bytes are seman-
tically defined and which are not for the associated given
cache line.

Memory requests to the cache(s) of the hierarchical
memory system can include an address specifying a
requested cache line as well as a mask that includes a
number of bits each corresponding to a different byte of the
requested cache line. The values of the bits of the byte mask
indicate which bytes of the requested cache line are to be
returned from the hierarchical memory system. The memory
request is processed by the top level cache of the hierarchical
memory system, looking for one or more valid bytes of the
requested cache line corresponding to the target address of
the memory request. The valid bytes of the cache line
corresponding to the byte mask as stored in cache can be
identified by reading out the valid bit(s) and data byte(s)
stored by the cache for putative matching cache lines for
those data bytes that are specified by the byte mask of the
memory request, while ignoring the valid bit(s) and data
byte(s) stored by the cache for putative matching cache lines
for those data bytes that are not specified by the byte mask
of the memory request.

In one embodiment, the cache of the hierarchical memory
system can be an associative structure that stores a plurality
of cache lines along with a tag for each cache line. The cache

US 9,513,904 B2

3

can be further configured to process memory requests by
comparing the tag of the cache line address of the memory
request to the tag of the cache line stored by the cache that
putatively matches the cache line address of the memory
request. The cache can be further configured to generate a
plurality of per-byte hit/miss signals based on the processing
of the valid bits of the accessed cache line and the tag
comparison of the tag of the accessed cache line, wherein the
plurality of per-byte hit/miss signals correspond to the
number of data bytes in a given cache line. The per-byte
hit/miss signals can indicate whether the cache stores a
corresponding valid data byte for the cache line correspond-
ing to the cache line address but only for those data bytes
specified by the byte mask of the memory request. The cache
can be further configured to output valid data bytes for the
cache line corresponding to the cache line address of the
memory request but only for those data bytes specified by
the byte mask of the memory request.

In another embodiment, the cache can include at least one
buffer and at least one cache array for storing cache lines,
where the at least one buffer stores valid data bytes for newly
written cache lines as well as cache lines newly evicted from
the at least one cache array. The cache can process a store
request by writing the valid data bytes provided as part of the
store request to the at least one buffer and marking such data
bytes as dirty. In the event that the at least one cache array
stores valid data bytes for the cache line specified by the
store request, the cache can further process the store request
by merging valid data bytes of the cache line as stored in the
buffer with the valid data bytes stored in the at least one
cache array. The cache can further processes the store
request by writing valid data bytes of the cache line as stored
in the buffer into the at least one cache array and marking
such data bytes as clean. The cache can also be configured
to lower valid data bytes of an evicted cache line marked as
dirty as stored in the at least one buffer to a lower level of
the hierarchical memory system. The lower level of the
hierarchical memory system ca be configured to store the
valid data bytes of the evicted cache line marked as dirty as
lowered by the cache by overwriting any corresponding
cache line or creating a new cache line and marking it dirty.
The cache can also be configured to process a load request
by accessing both the at least one buffer and the at least one
cache array to determine if either one stores valid data bytes
for the cache line specified by the cache line address of the
load request. The cache can further process the load request
by issuing a read request to the next lower level in the
hierarchical memory system, where the read request speci-
fies a number of data bytes for the requested cache line that
missed in both the at least one buffer and the at least one
cache array of the cache. The lower level of the hierarchical
memory system can be configured to hoist valid data bytes
of the requested cache line as specified in the read request
that hit in the lower level of the hierarchical memory system
for storage in the at least one cache. The cache can be
configured to carry out a byte-wide merger process with
respect to the valid data bytes for a given cache line as
hoisted from the lower level of the hierarchical memory
system and the valid data bytes for the given cache line as
stored in the at least one cache array.

In another aspect, a shared memory multiprocessor sys-
tem is provided that employs a plurality of processors with
a hierarchical memory system that includes at least one
private cache per processor and shared memory resources.
The at least one private cache of each given processor stores
a plurality of cache lines as well as a plurality of valid bits
for each cache line, wherein each cache line includes a

10

15

20

25

30

35

40

45

50

55

60

65

4

plurality of data bytes, and wherein the plurality of valid bits
for a given cache line correspond to the plurality of data
bytes of the given cache line and provide an indication of the
validity of the corresponding data bytes of the given cache
line. The private caches of the hierarchical memory system
are coupled to one another by an interconnect network. The
at least one private cache of each given processor is con-
figured to carry out a cache coherence protocol that allows
the private caches for different processors to hold the same
cache line in modified state so long as the sets of valid bits
held by the respective private caches for the different pro-
cessors are disjoint with respect to one another. Exemplary
operations of the cache coherence protocol are also
described and claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram of a computer
processing system according to an embodiment of the pres-
ent disclosure.

FIG. 2 is a schematic diagram of exemplary pipeline of
processing stages that can be embodiment by the computer
processor of FIG. 1.

FIG. 3 is schematic illustration of components that can be
part of the execution/retire logic of the computer processor
of FIG. 1 according to an embodiment of the present
disclosure.

FIG. 4 is schematic illustration of components that can be
part of the execution/retire logic and hierarchical memory
system of the computer processor of FIG. 1 according to an
embodiment of the present disclosure.

FIG. 5Ais a schematic diagram of a bank of an exemplary
cache memory structure, which can form part of the L.1 Data
Cache 115 and the 1.2 Cache 117 of the hierarchical memory
system of FIG. 4 in accordance with the present disclosure.

FIG. 5B is a schematic diagram of Hit/Miss OR Logic that
is part of the bank of the cache memory structure of FIG. 5A.

FIG. 5C is a schematic diagram of an output multiplexer
circuit that is part of the bank of the cache memory structure
of FIG. 5A.

FIG. 6 is a schematic high level diagram of an exemplary
L1 Data Cache in accordance with the present disclosure.

FIGS. 7A-7B, collectively, is a flow chart that illustrates
exemplary operations carried out by the computer processor
and the L1 Data Cache of FIGS. 4 and 6 in processing a load
request.

FIG. 8 is a graphical representation of the hoisting of load
requests within a memory hierarchical memory system that
includes L1 Data Cache of FIG. 6.

FIG. 9 is a flow chart that illustrates exemplary operations
carried out by the computer processor and the .1 Data
Cache of FIGS. 4 and 6 in processing a store request.

FIG. 10 is a graphical representation of the lowering of
store requests within a hierarchical memory system that
includes L1 Data Cache of FIG. 6.

FIG. 11 is a schematic block diagram of an exemplary
shared memory multicore processor chip in accordance with
the present disclosure.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Tustrative embodiments of the disclosed subject matter
of the application are described below. In the interest of
clarity, not all features of an actual implementation are
described in this specification. It will of course be appreci-
ated that in the development of any such actual embodiment,

US 9,513,904 B2

5

numerous implementation-specific decisions must be made
to achieve the developer’s specific goals, such as compli-
ance with system-related and business-related constraints,
which will vary from one implementation to another. More-
over, it will be appreciated that such a development effort
might be complex and time-consuming but would neverthe-
less be a routine undertaking for those of ordinary skill in the
art having the benefit of this disclosure.

As used herein, the term “operation” is a unit of execu-
tion, such as an individual add, load, store or branch
operation.

The term “instruction” is a unit of logical encoding
including zero or more operations. For the case where an
instruction includes multiple operations, the multiple opera-
tions are semantically performed together.

The term “hierarchical memory system” is a computer
memory system storing instructions and operand data for
access by a processor in executing a program where the
memory is organized in a hierarchical arrangement of levels
of memory with increasing access latency from the top level
of memory closest to the processor to the bottom level of
memory furthest away from the processor.

The term “cache line” or “cache block™ is a unit of
memory that is accessed by a computer processor. The cache
line includes a number of bytes (typically 4 to 128 bytes).

The computer processing system of the present applica-
tion addresses the granularity disparity between cache line
sizes and program access to data (the cause of write miss
problems) by adding a number of valid bits to each cache
line of a hierarchical memory system. The valid bits are
provided for each cache line stored in a respective cache and
make explicit which bytes are semantically defined and
which are not for the associated given cache line. In this
manner, each cache of the hierarchical memory system
stores a number of valid bits for each cache line. The valid
bits corresponding to a given cache line indicate which bytes
are valid (semantically defined) and which bytes are not
valid (not semantically defined) for the given cache line.

In accordance with the present application, a processor is
configured with execution logic that includes a load unit that
executes load operations. The load operations can be speci-
fied by instructions processed by the processor. The execu-
tion of a given load operation involves the generation of a
load request this communicated to the hierarchical memory
system. The load request includes an address specifying a
requested cache line as well as a mask (referred to herein as
a “byte mask™) that includes a number of bits each corre-
sponding to a different byte of the requested cache line. The
values of the bits of the byte mask indicate which bytes of
the requested cache line are to be returned from the hierar-
chical memory system. The load request is processed by the
top level cache of the hierarchical memory system, looking
for one or more valid bytes of the requested cache line
corresponding to the target address of the load request. The
valid byte(s) of the cache line corresponding to the byte
mask as stored in cache can be identified by reading out the
valid bit(s) and data byte(s) stored by the cache for putative
matching cache lines for those data bytes that are specified
by the byte mask of the load request, while ignoring the valid
bit(s) and data byte(s) for such putative matching cache lines
for those data bytes that are not specified by the byte mask
of the load request. Thus, the valid bit(s) and corresponding
data byte(s) as specified by the byte mask for putative
matching cache lines are read out from the cache memory,
and the valid bit(s) and corresponding data byte(s) that are
not specified by the byte mask for putative matching cache
lines are not read out from the cache memory. The valid

15

40

45

55

6

bit(s) read out from the cache memory are used to generate
per-byte hit/miss signals for the cache. The data byte(s) read
out from the cache memory are feed to a multiplexer circuit
that is controlled by the per-byte hit miss signals to selec-
tively output the valid data byte(s) stored in the cache for the
requested cache line where such output data bytes are
specified by the byte mask of the load request.

For example, if a cache line can include four possible
valid bytes—byte 0, byte 1, byte 2, byte 3, the byte mask can
be used to identify byte 2 and byte 3 of a given cache line.
The valid bytes 2 and 3 of the cache line corresponding to
the byte mask as stored in the cache are identified by reading
out from the cache only the valid bit(s) for bytes 2 and 3 as
well as the data bytes 2 and 3, themselves, for the requested
cache line. The valid bit(s) for bytes 1 and 4 as well as the
data bytes 1 and 4, themselves, for the requested cache line
are not read out from the cache array. The valid bits for bytes
2 and 3 as read out from the cache memory are used to
generate per-byte hit signals for bytes 2 and 3 and per-byte
miss signals for bytes 1 and 4. The data byte(s) 2 and 4 read
out from the cache memory are feed to a multiplexer circuit
that is controlled by the per-byte hit signals for bytes 2 and
3 to selectively output the valid data byte(s) 2 and 3 stored
in the cache for the requested cache line.

Any valid data byte(s) that is (are) retrieved from the
cache is (are) returned to the execution logic for satisfaction
of the load request, and the corresponding mask bits in the
request are cleared. If all bits of the byte mask have been
cleared, then the load request has been fully satisfied and
further checks in the memory hierarchy are skipped. If any
bits remain set in the byte mask, this indicates that one or
more bytes desired by the load request have not yet been
satisfied. In this case, a load request is issued to the next
lower level cache of the memory hierarchy employing the
updated byte mask. The next lower level cache of the
memory hierarchy can repeat these operations to check for
storage of the remaining bytes as specified by the byte mask
of the load request. In the event that requested bytes remain
unsatisfied after checking all cache levels, then the request
cache line can be read the line from main memory (a cache
fill) in order to satisfy the remaining desired bytes from the
cache line. Thus a single load request may be satisfied by
bytes obtained from several different caches and/or main
memory.

The execution logic of the processor also includes a store
unit that executes store operations. The store operations can
be specified by instructions processed by the processor. The
execution of a given store operation involves the generation
of a store request communicated to the hierarchical memory
system. The store request includes an address specifying a
cache line, one or more bytes of data to store in such cache
line, and a byte mask that specifies where the one or more
bytes are to be written into such cache line. The store request
is processed by the top level cache of the hierarchical
memory system. In processing the store request, the target
cache line is looked up, and if found there (a write hit), the
byte mask is used to store the data byte(s) of the load request
in the target cache line with the appropriate byte offset.
Furthermore, the valid bits of the target cache line are set
only for the written data bytes that are specified by the byte
mask. If the target line is not found, (a write miss) then a new
cache line is allocated in the cache, with all valid bits
cleared, and then the store request proceeds as if there had
been a write hit to the newly allocated line. The byte mask
is used to store the data byte(s) of the load request in the
target cache line with the appropriate byte offset. Further-
more, the valid bits of the target cache line are set only for

US 9,513,904 B2

7

the written data bytes that are specified by the byte mask.
Due to the disparity between access size and line size, it is
possible that the new cache line will only have a few of the
valid bits set.

In some cache designs, the top level cache is write-
through and new lines are not allocated there after a write
miss. In such designs, write-miss allocation occurs at a
lower level in the hierarchical memory system, but is
otherwise as described above.

It is common for cache lines to be moved or copied
between levels of the hierarchical memory system. An
example is the cache fill from main memory that results from
a load request miss. In the context of the present application,
it is possible for the same cache line to reside at several
different levels of cache in the hierarchical memory system,
usually with different but possibly overlapping combina-
tions of valid bits. Thus, whenever a cache line is moved or
copied to a level of cache that already contains a version of
the same line then the incoming cache line must be merged
with the resident cache line. Of the two cache lines, one is
or was resident at a higher level (closer to the CPU) in the
hierarchy than the other. The merger proceeds byte-by-byte
based on the corresponding valid bits of corresponding bytes
of the two cache lines. If neither cache line has a set valid
bit for some byte then the result also does not have the valid
bit set and the byte value is undefined. If one cache line has
a set valid bit and the other does not, then the result has the
valid bit set and the byte value is taken from the cache line
in which the byte was marked valid. If both cache lines have
the valid bit set, the result will also have the valid bit set, and
the byte value will be that of the cache line that was higher
in the hierarchical memory system. These rules ensure that
a load request, searching from the top of the hierarchical
memory system, will find the most recently written value for
each byte of the load request.

The effect of the memory access operations described
herein is that store requests cannot miss, obviating the
excess traffic of write-through designs and the buffering of
write-back designs. Instead a new empty cache line will be
allocated in cache and updated instead.

It is common in cache designs that each cache line is
associated with a single dirty bit that indicates whether the
cache line contains newly written data that is not reflected in
copies of the cache line that are lower in the cache of the
hierarchical memory system or in main memory. When a
dirty cache line must be evicted to make room in the cache
then the dirty bit tells whether the cache line must be
lowered to a lower level (and merged with any copy already
resident there, setting the newly merged cache line as dirty
in the process) or can be simply discarded.

Laning memory interfaces can be used to interface to
main memory. In this case, it is possible to write only
selected bytes of a cache line to main memory rather than
whole cache lines, at a savings of power and time. The valid
bits are advantageous when a dirty line must be lowered to
a laning main memory, i.e. written out, because only the
valid bytes need to be written.

Lowering a line costs power and bandwidth, and so is to
be avoided if possible. The memory access operations
described above can be augmented so as to reduce the
propagation of dirty lines. In the augmentation, any time that
valid (as indicated by the valid bits) data is overwritten by
new data, either by a store operation executed by the CPU
or as a result of lowering, the former and new values of the
overwritten bytes are compared (overwrite compare). If the
compared bytes have equal value, then the cache line is not
marked as dirty as a result of the overwrite; of course the line

20

35

40

45

50

8

may have already been dirty, and in which case it remains so,
and the comparison may be omitted to save power.

In accordance with the present disclosure, a sequence of
instructions is stored in the memory system 101 and pro-
cessed by a CPU (or Core) 102 as shown in the exemplary
embodiment of FIG. 1. The CPU (or Core) 102 includes a
number of instruction processing stages including at least
one instruction fetch unit (one shown as 103), at least one
instruction buffer or queue (one shown as 105), at least one
decode stage (one shown as 107) and execution/retire logic
109 that are arranged in a pipeline manner as shown. The
CPU (or Core) 102 also includes at least one program
counter (one shown as 111), at least one L1 instruction cache
(one shown as 113), an [.1 data cache 115 and a shared
instruction/data L2 Cache 117.

The L1 instruction cache 113, the L1 data cache 115 and
the .2 cache are logically part of the hierarchy of the
memory system 101. The [.1 instruction cache 113 is a cache
memory that stores copies of instruction portions stored in
the memory system 101 in order to reduce the latency (i.e.,
the average time) for accessing the instruction portions
stored in the memory system 101. In order to reduce such
latency, the L1 instruction cache 113 can take advantage of
two types of memory localities, including temporal locality
(meaning that the same instruction will often be accessed
again soon) and spatial locality (meaning that the next
memory access for instructions is often very close to the last
memory access or recent memory accesses for instructions).
The L1 instruction cache 113 can be organized as a set-
associative cache structure, a fully associative cache struc-
ture, or a direct mapped cache structure as is well known in
the art. Similarly, the L1 data cache 115 is a cache memory
that stores copies of operands stored in the memory system
101 in order to reduce the latency (i.e., the average time) for
accessing the operands stored in the memory system 101. In
order to reduce such latency, the L1 data cache 115 can take
advantage of two types of memory localities, including
temporal locality (meaning that the same operand will often
be accessed again soon) and spatial locality (meaning that
the next memory access for operands is often very close to
the last memory access or recent memory accesses for
operands). The L1 data cache 115 can be organized as a
set-associative cache structure, a fully associative cache
structure, or a direct mapped cache structure as is well
known in the art. The shared L2 Cache 117 stores both
instructions and data. The L2 cache 117 can be organized as
a set-associative cache structure, a fully associative cache
structure, or a direct mapped cache structure as is well
known in the art. The hierarchy of the memory system 201
can also include additional levels of cache memory, such as
a level 3 cache, as well as main memory. One or more of
these additional levels of the cache memory can be inte-
grated with the CPU 202 as is well known. The details of the
organization of the memory hierarchy are not particularly
relevant to the present disclosure and thus are omitted from
the figures of the present disclosure for sake of simplicity.

The program counter 111 stores the memory address for
a particular instruction and thus indicates where the instruc-
tion processing stages are in processing the sequence of
instructions. The memory address stored in the program
counter 111 can be used to control the fetching of the
instructions by the instruction fetch unit 103. Specifically,
the program counter 111 can store the memory address for
the instruction to fetch. This memory address can be derived
from a predicted (or resolved) target address of a control-
flow operation (branch or CALL operation), the saved
address in the case of a RETURN operation, or the sum of

US 9,513,904 B2

9

memory address of the previous instruction and the length of
previous instruction. The memory address stored in the
program counter 111 can be logically partitioned into a
number of high-order bits representing a cache line address
($ Cache Line) and a number of low-order bits representing
a byte offset within the cache line for the instruction.

The instruction fetch unit 103, when activated, sends a
request to the L1 instruction cache 113 to fetch a cache line
from the L1 instruction cache 113 at a specified cache line
address ($ Cache Line). This cache line address can be
derived from the high-order bits of the program counter 111.
The L1 instruction cache 113 services this request (possibly
accessing lower levels of the memory system 101 if missed
in the L1 instruction cache 113), and supplies the requested
cache line to the instruction fetch unit 103. The instruction
fetch unit 103 passes the cache line returned from the .1
instruction cache 113 to the instruction buffer 105 for storage
therein.

The decode stage 107 is configured to decode one or more
instructions stored in the instruction buffer 105. Such decod-
ing generally involves parsing and decoding the bits of the
instruction to determine the type of operation(s) encoded by
the instruction and generate control signals required for
execution of the operation(s) encoded by the instruction by
the execution/retire logic 109.

The execution/retire logic 109 utilizes the results of the
decode stage 107 to execute the operation(s) encoded by the
instructions. The execution/retire logic 109 can send a load
request to the [L1 data cache 115 to fetch data from the L1
data cache 115 at a specified memory address. The [.1 data
cache 115 services this load request (possibly accessing the
L2 cache 117 and lower levels of the memory system 101 if
missed in the [.1 data cache 115), and supplies the requested
data to the execution/retire logic 109. The execution/retire
logic 109 can also send a store request to the [.1 data cache
115 to store data into the memory system at a specified
address. The L1 data cache 115 services this store request by
storing such data at the specified address (which possibly
involves overwriting data stored by the data cache and
lowering the stored data to the 1.2 Cache 117 and lower
levels of the hierarchical memory system).

The instruction processing stages of the CPU (or Core)
102 can achieve high performance by processing each
instruction and its associated operation(s) as a sequence of
stages each being executable in parallel with the other
stages. Such a technique is called “pipelining.” An instruc-
tion and its associated operation(s) can be processed in five
stages, namely, fetch, decode, issue, execute and retire as
shown in FIG. 2.

In the fetch stage, the instruction fetch unit 103 sends a
request to the L1 instruction cache 113 to fetch a cache line
from the L1 instruction cache 113 at a specified cache line
address ($ Cache Line). The instruction fetch unit 103 passes
the cache line returned from the L1 instruction cache 113 to
the instruction buffer 105 for storage therein.

The decode stage 107 decodes one or more instructions
stored in the instruction buffer 107. Such decoding generally
involves parsing and decoding the bits of the instruction to
determine the type of operation(s) encoded by the instruc-
tion and generating control signals required for execution of
the operation(s) encoded by the instruction by the execution/
retire logic 109.

In the issue stage, one or more operations as decoded by
the decode stage are issued to the execution logic 109 and
begin execution.

10

15

20

25

30

35

40

45

50

55

60

65

10

In the execute stage, issued operations are executed by the
functional units of the execution/retire logic 109 of the
CPU/Core 102.

In the retire stage, the results of one or more operations
produced by the execution/retire logic 109 are stored by the
CPU/Core 102 as transient result operands for use by one or
more other operations in subsequent issue/execute cycles.

The execution/retire logic 109 includes a number of
functional units (FUs) which perform primitive steps such as
adding two numbers, moving data from the CPU proper to
and from locations outside the CPU such as the memory
hierarchy, and holding operands for later use, all as are well
known in the art. Also within the execution/retire logic 109
is a connection fabric or interconnect network connected to
the FUs so that data produced by a producer (source) FU can
be passed to a consumer (sink) FU for further storage or
operations. The FUs and the interconnect network of the
execution/retire logic 109 are controlled by the executing
program to accomplish the program aims.

During the execution of an operation by the execution
logic 109 in the execution stage, the functional units can
access and/or consume transient operands that have been
stored by the retire stage of the CPU/Core 102. Note that
some operations take longer to finish execution than others.
The duration of execution, in machine cycles, is the execu-
tion latency of an operation. Thus, the retire stage of an
operation can be latency cycles after the issue stage of the
operation. Note that operations that have issued but not yet
completed execution and retired are “in-flight.” Occasion-
ally, the CPU/Core 102 can stall for a few cycles. Nothing
issues or retires during a stall and in-flight operations remain
in-flight.

FIG. 3 is a schematic diagram illustrating the architecture
of an illustrative embodiment of the execution/retire logic
109 of the CPU/Core 102 of FIG. 1 according to the present
disclosure, including a number of functional units 201. The
execution/retire logic 109 also includes a set of operand
storage elements 203 that are operably coupled to the
functional units 201 of the execution/retire logic 109 and
configured to store transient operands that are produced and
referenced by the functional units of the execution/retire
logic 109. An interconnect network 205 provides a physical
data path from the operand storage elements 203 to the
functional units that can possibly consume the operand
stored in the operand storage elements. The interconnect
network 205 can also provide the functionality of a bypass
routing circuit (directly from a producer functional unit to a
consumer function unit).

In one embodiment shown in FIG. 4, the memory hier-
archy of the CPU/Core 102 includes several levels of cache,
such as L1 data cache 115 (for example, with an access time
of three machine cycles) and an L2 instruction/data cache
117 (for example, with an access time of 10 machine cycles),
as well as main memory 101A (for example, with an access
time of 400 machine cycles). Other memory hierarchy
organizations and access times can also be used. The func-
tional units of the execution/retire logic 109 includes a load
unit 401 and a store unit 403 as shown. Load operations are
decoded by the decode stage 107 and issued for execution by
the load unit 401, which issues a load request corresponding
to the decoded load operation to the .1 Data Cache 115. The
address for the load request can be provided directly from
the machine code of the load operation. Alternatively, the
address for the load request can be provided from the
operand storage (via the interconnect network 205) at a
reference specified by the machine code of the load opera-
tion. Store operations are decoded by the decode stage 107

US 9,513,904 B2

11

and issued for execution by the store unit 403, which issues
a store request corresponding to the decoded store operation
to the [L1 Data Cache 115. The address for the store request
can be provided directly from the machine code of the store
operation. Alternatively, the address for the store request can
be provided from the operand storage (via the interconnect
network 205) at a reference specified by the machine code
of' the store operation. The operand data for the store request
can be provided from the operand storage (via the intercon-
nect network 205) at a reference specified by the machine
code of the store operation.

The execution/retire logic 109 also includes retire stations
405, which are hardware units that are able to hold the
address of a load operation and possibly buffers the result
data as it arrives from the memory hierarchy. The number of
retire stations 405 can vary. Each retire station 405 is
capable of handling one potential in-flight load operation. A
load operation contains arguments that specify a memory
address and possibly the width and scalarity of the desired
data. Thus, a load operation may request to load a byte from
address Ox123456789. The load operation is decoded and
issued for execution by the load unit 401. When executing
the load operation, the load unit 401 allocates a retire station
405 from the available pool of retire stations. The load unit
401 also sends the station number of the allocated retire
station with the address and width as part of a load request
to the LI Data Cache.

The L1 data cache 115 services the load request by
returning all (or part) of the requested data that hits in the L1
data cache 115 to the allocated retire station 405. If the
requested data is not found (misses) in .1 data cache 115,
the missing part(s) of the requested data are requested from
the next level in the memory hierarchy (the L2 cache 117
and so on) until it is located and returned to the allocated
retire station 405. The allocated retire station 405 can buffer
the requested data, if need be. The retire station 405 can
output the stored requested data over the interconnect net-
work 205 for storage in the fast operand storage 203 of the
execution/retire logic 109, and then clears its state, and waits
to be allocated again by another load operation.

FIG. 5A is a schematic diagram of a bank of an exemplary
cache memory structure, which can form part of the cache
memory for the [.1 Data Cache 115 and the [.2 Cache 117
of FIG. 4 in accordance with the present disclosure. In this
example, the bank is an 8 KB array realized by a 4-way set
associative structure of 4 byte cache lines. A cache line is
addressed by a 64-bit address that includes 2 bits for the byte
offset, 2 bits for the bank identifier (in this case, the cache
includes 4 banks that are individually selected by the cor-
responding bank identifier, an 11-bit index to select one of
the 2000 rows of the array, and a 49-bit tag as shown. The
byte mask for the load request includes 4 bits that corre-
spond to the 4 bytes of the requested cache line.

The 64-bit cache line address and byte mask are used to
lookup the cache line from the cache structure as part of the
processing of a load request or store request as follows. The
bank identifier of the cache line address is used to select one
of the four banks of the cache. Each one of the four ways of
the respective bank includes 2000 rows corresponding to a
row index. Each row is an array structure that stores the data
pertaining to a corresponding cache line, including a tag
storage part for storing the 49-bit tag of the cache line, a
valid-bit part for storing the 4 valid bits corresponding to the
4 bytes of the cache line, a data byte part for storing the 4
bytes of data of the cache line, a dirty bit part for storing the
single dirty bit of the cache line. The index of the cache line
address is supplied to the row selector circuit 501, which

10

20

25

30

35

40

45

50

55

60

65

12

generates a row select signal according to the index of the
cache line address in order to access the corresponding row
of the four ways of the selected bank.

In each way, the tag of the selected row is read out and
supplied to a tag comparator circuit 503, which compares the
read-out tag to the tag of the address to generate a signal that
indicates whether the tags match one another. This signal is
supplied to per-byte hit/miss logic 505 as described below.
The byte mask of the address is supplied to read-out control
circuit 507 as shown. This read-out control circuit 507 has
two parts. One part (labeled “V”) reads out one or more valid
bits of the selected row of the way corresponding to the one
or more bytes selected by the byte mask. For those bytes not
selected by the byte mask, an “invalid” bit signal is used.
The signals output by this part “V” are supplied to the
per-byte hit/miss logic 505 as described below. The other
part (labeled “Data”) reads out one or more data bytes from
the selected row of the way corresponding to the byte mask.
For those bytes not selected by the byte mask, it outputs an
“invalid” data value. The data values output by this part
“Data” is supplied to the output mux circuit 509 of FIG. 5C.
The dirty bit of the selected row is also read out and supplied
to the output mux circuit of FIG. 5C. In this manner, the
read-out control circuit 507 operates to read out the valid
bit(s) and data byte(s) stored by the cache for putative
matching cache lines for those data bytes that are specified
by the byte mask of the load request, while ignoring the valid
bit(s) and data byte(s) for such putative matching cache lines
for those data bytes that are not specified by the byte mask
of the load request. Thus, the valid bit(s) and corresponding
data byte(s) as specified by the byte mask for putative
matching cache lines are read out from the cache, and the
valid bit(s) and corresponding data byte(s) that are not
specified by the byte mask for putative matching cache lines
are not read out from the cache.

The per-byte hit/miss logic 505 of the respective way
generates a per-byte hit/miss signal based on the output
signal supplied by the tag comparator circuit 503 and the
valid/invalid bits output signals supplied by the read-out
control circuit 507. The hit/miss signal for a given byte of
data of the requested cache line represents a hit if the output
signal of the tag comparator circuit 503 indicates that the
tags match and the valid/invalid bit output signal supplied by
the read-out control circuit 507 indicates that that the byte is
valid (and also selected by the byte mask). The per-byte
hit/miss signals generated by logic 505 are supplied as
inputs to per-byte OR logic 511 of FIG. 5B. These per-byte
hit/miss signals are supplied as control inputs to the output
mux circuit of FIG. 5C.

As shown in FIG. 5B, the per-byte OR logic 511 includes
a 4 input OR gate for each data byte. The OR gate for the
“byte 0” data byte outputs the OR function of the byte 0
hit/miss signals for the 4 ways of the bank to generate a
hit/miss signal for the requested “byte 0” data byte with
respect to the cache lines of the entire bank. The OR gate for
the “byte 1” data byte outputs the OR function of the byte
1 hit/miss signals for the 4 ways of the bank to generate a
hit/miss signal for the requested “byte 17 data byte with
respect to the cache lines of the entire bank. The OR gate for
the “byte 2” data byte outputs the OR function of the byte
2 hit/miss signals for the 4 ways of the bank to generate a
hit/miss signal for the requested “byte 2” data byte with
respect to the cache lines of the entire bank. The OR gate for
the “byte 3” data byte outputs the OR function of the byte
3 hit/miss signals for the 4 ways of the bank to generate a
hit/miss signal for the requested “byte 3 data byte with
respect to the cache lines of the entire bank.

US 9,513,904 B2

13

As shown in FIG. 5C, the output mux circuit 509 has two
parts 509A and 509B. Both parts S09A and 509B use the
per-byte hit/miss signals output by the per-byte hit/miss
logic 505 of the four ways as control inputs. The first part
509A (labeled “Byte Mux™) outputs one or more data bytes
read-out from of a select way as supplied by the read-out
circuits of the 4 ways in accordance with such per-byte
hit/miss signals. Note that only one of the ways can possibly
hit in a given lookup operation and thus and the one or more
data bytes of the way that hits will be output by the Byte
Mux part 509A. The second part 509B (labeled “D-bit Mux)
outputs a dirty bit read out from the selected way as supplied
by the read-out circuits of the 4 ways in accordance with the
per-byte hit/miss signals. As described above, only one of
the ways can possibly hit in a given lookup operation and
thus the one dirty bit of the way that hits will be output by
the D-bit Mux part 509B.

FIG. 6 is a schematic high level diagram of an exemplary
L1 Data Cache 115 in accordance with the present disclo-
sure. It includes load request processing logic 601 and store
request processing logic 603 that are part of a cache con-
troller 604. It also includes a number of cache arrays or
banks 605 and corresponding victim buffers 607, and a
protection lookaside buffer 609. The load request processing
logic 601 receives load requests and processes such load
requests to perform lookup operations of the cache struc-
tures as described below with respect to FIGS. 7A and 7B.
The load request processing logic 601 also cooperates with
the lower level cache of the memory hierarchy when data
bytes are hoisted to the cache as described below with
respect to FIG. 8. The store request processing logic 603
receives store requests and processes such store request to
perform data store and lookup operations of the cache
structures as described below with respect to FIG. 9. The
store request processing Logic 603 also cooperates with the
lower level cache of the memory hierarchy to lower valid
dirty data as described below with respect to FIG. 10.

The cache arrays (banks) 605 are set-associative struc-
tures with rows that store the data pertaining to a corre-
sponding cache line as described above with respect to
FIGS. 5A-5C.

The victim buffers 607 are fully-associative structures
whose entries each hold the tag, the data bytes, the valid bits
for corresponding data bytes of the cache line, and the dirty
bit of the cache line. Each victim buffer entry can also hold
an unshadowed bit that indicates whether the data byes of
the cache line are not duplicated in the corresponding bank
of'the cache. Note that same cache line may exist in both the
victim buffers and the cache arrays (banks) 605. The victim
buffers can be readily available, fully associative and fast,
whereas the cache arrays (banks) can be subject to conten-
tions from other requests, not fully associative, and slower
than the victim buffers. Consequently store requests can be
configured to store the cache line in the victim buffer
(possibly newly allocated for the purpose), and then only
later as capacity permits is the cache line as stored in the
victim buffer moved to or merged into the cache arrays
(banks). This can occur when a dirty cache line already in
the cache arrays (banks) is written to. The new data is
written to a cache line allocated in the victim buffer, with the
rest of that cache line invalid. The unshadowed bit tells
whether there is a corresponding cache line in the cache
arrays (banks) or not (shadowed means that there is a line in
the banks). In a subsequent load request, if the load is not
satisfied by a hit in the victim buffer, then the unshadowed
bit of the cache line is used to initial access into the cache
arrays (banks) (or in the next lower cache next if it misses

25

40

45

14

in the arrays (banks)). In addition, the unshadowed bit is
used for background tasks to indicate that the cache line
needs to be copied from the victim buffer into the cache
arrays (banks). Once an unshadowed and dirty cache line has
been moved from the victim buffer to the cache arrays
(banks) and there is a need to allocate space for a new cache
line in the victim buffer, the shadowed cache line can be
discarded (as a copy exists in the cache arrays (banks). The
background task can work to copy all unshadowed cache
lines so that it can allocates space for a number of cache lines
in the event that a burst of store requests occur.

The victim buffers 607 are accessed by matching the tag
of the cache line address to the tag of the entry. The victim
buffers 607 are used to hold newly written store queue
entries (resulting from store requests) as well as least-
recently-used (LRU) cache lines evicted from the banks 605
of the cache. As described below with request to operations
of FIGS. 7A to 10, store requests are handled by writing the
data of the store request only to a victim buffer, which
involves setting the dirty bit for the cache line and the valid
bytes for each byte written. The new dirty line and newly
touched evicted lines swap into the banks of the cache using
spare bandwidth and evicting the LRU cache line of the
corresponding row. Dirty evicted cache lines are lowered
down to the cache hierarchy. Also, store requests overwrite
corresponding clean evicted cache lines that are stored in the
victim buffers.

The protection lookaside buffer 609 provides for access
control, restricting the kind of access and the address space
accessible by the program. The address space of the program
can employ virtual memory, which provides for two differ-
ent purposes in modern CPUs. One purpose, hereinafter
paging, permits the totality of the address spaces used by all
programs to exceed the physical memory attached to the
machine. The other purpose, hereinafter address extension,
permits the totality of the address spaces used by all pro-
grams to exceed the address space supported by the hard-
ware.

Paging can be used to map the virtual addresses used by
the program at page granularity to physical addresses rec-
ognized by external backing memory or to devices such as
disk that are used as paging store. A program reference to an
unmapped virtual address is treated as an error condition and
reported to the program using a variety of methods, but
usually resulting in program termination. The set of valid
virtual addresses usable without error by a program is called
its address space. The address mapping is represented by a
set of mapping tables maintained by the operating system as
it allocates and de-allocates memory for the various running
programs. Every virtual address must be translated to the
corresponding physical address before it may be used to
access physical memory. Systems with caches differ in
whether cache lines are known by their physical address
(physical caching) or virtual address (virtual caching). In the
former, virtual addresses must be translated before they are
used to access cache; in the latter, translation occurs after
cache access and is avoided if the reference is satisfied from
cache.

Address extension is not needed when the space encom-
passed by the representation of a program address is large
enough. Common representations of program address space
are four bytes (32 bits) and eight bytes (64 bytes). The
four-byte representation (yielding a four gigabyte address
space) is easily exceeded by modern programs, so addresses
(and address spaces) must be reused with different meanings
by different programs and address extension must be used.
Reuse of the same address by different programs is called

US 9,513,904 B2

15

aliasing. Hardware must disambiguate aliased use of
addresses before they are actually used in the memory
hierarchy. In physical caches, alias disambiguation must
occur prior to the caches. In virtual caches, disambiguation
may occur after the caches if the caches are restricted to hold
only memory from a single one of the aliased addressed
spaces. Such a design requires that cache contents be dis-
carded whenever the address space changes, and is of
historical interest only. However, the total space used by
even thousands of very large programs will not approach the
size representable in 64 bits, so aliasing need not occur and
address extension is unnecessary in 64-bit machines. A
machine that does not use address extension permits all
programs to share a single, large address space; such a
design is said to use the single-address-space model.

It happens that the same hardware can be used both to
disambiguate aliases and to map physical memory, and such
is the common arrangement. Because alias disambiguation
is typically performed prior to physical caches, using the
common hardware means that page mapping occurs their
too. When paging and alias disambiguation are in front of
physical caches, it is also common to use the same hardware
for access control, restricting the kinds of access and the
addresses accessible to the program. The hardware enforced
restrictions comprise the protection model of the processor
and memory system. Protection must apply to cache
accesses, so the protection machinery must be ahead of the
caches. Hence it is common to have one set of hardware that
intercepts all accesses to the memory hierarchy and applies
protection restriction, alias disambiguation, and page map-
ping all together. Because all this must be performed for
every reference to memory, and specifically must be per-
formed before cache can be accessed, the necessary hard-
ware is power hungry, large and on the critical path for
program performance.

The architecture of the processor and memory system of
FIGS. 4 and 6 presumes the use of virtual caches with a very
large single address space shared by all programs including
the operating system. In this context, aliasing does not exist
so alias disambiguation is unnecessary. Page mapping can be
performed after all the virtual caches using hardware spe-
cific to the purpose. The protection model of the system is
enforced by the protection lookaside buffer 609. Specifi-
cally, the protection lookaside buffer 609 provides for access
control, restricting the kinds of access and the addresses
accessible to the program. Such access control is enforced
before program accesses to cache are allowed to complete.
However, the cache access may be carried out in parallel
with the protection checking, which removes protection
from the program critical path.

FIGS. 7A-7B, collectively, is a flow chart that illustrates
exemplary operations carried out by the I.1 Data Cache of
FIG. 6 in processing a load request. In block 701, the
operations begin where the load request processing logic
601 processes a load request by extracting the cache line
address and byte mask from the load request. Alternatively,
the cache line address and byte mask can possibly be derived
from a byte address and length specified in the load request.

In block 703, the cache line address is looked up in the
victim buffer 607 corresponding to the cache line address in
order to ascertain if the victim buffer stores any newly
written store queue entries or LRU evicted cache lines that
correspond to the cache line address and byte mask derived
in block 701. In the event that such look up operations result
in a hit in the corresponding victim buffer 607 (where the
victim buffer stores a cache line whose tag matches the tag
of the cache line address with valid bits that identify one or

10

15

20

25

30

35

40

45

50

55

60

65

16

more valid bytes corresponding to the byte mask), the
operations continue to blocks 705 to block 711; otherwise,
the operations continue to block 713.

In block 705, the valid requested bytes that hit in the
victim buffer 607 are returned to the execution/retire logic of
the processor for satisfaction of the load request. The
returned bytes can be buffered for merger with other
returned bytes as described herein. In block 707, the LRU
cache line corresponding to the requested cache line address
is identified. In block 709, the valid requested byte(s) of the
cache line as stored in the victim buffer 607 and such LRU
cache line are swapped with one another, thus writing the
valid byte(s) of the requested cache line, its tag, valid bits
and dirty bit as stored in the victim buffer 607 into the
corresponding cache array 605. These operations can be
configured to swap newly touched evicted lines swap into
the cache arrays 605 using spare bandwidth and evicting the
corresponding LRU cache line. In block 711, it is deter-
mined whether there are no remaining bytes left to be
satisfied (i.e., the valid requested bytes that hit in the victim
buffer 607 satisfied all of the bytes requested as defined by
the byte mask). If not, the operations continue block 713. If
so, the operations end.

In block 713, the cache line address is looked up in the
corresponding cache array 605 in order to ascertain if the
cache array stores any cache lines that correspond to the
cache line address and byte mask derived in block 701. Such
lookup operations of the cache array 605 can follow the
operations described above with respect to FIGS. 5A to 5C.
In the event that such look up operations result in a hit in the
corresponding cache array 605 where the cache array 605
stores a cache line whose tag matches the tag of the cache
line address with valid bits that identify one or more valid
bytes corresponding to the byte mask, the operations con-
tinue to blocks 715 and 717; otherwise, the operations
continue to block 719.

Inblock 715, the valid requested bytes that hit in the cache
array 605 are returned to the execution/retire logic of the
processor for satisfaction of the load request. The returned
bytes can be buffered for merger with other returned bytes
as described herein. In block 717, it is determined whether
there are no remaining bytes left to be satisfied (i.e., the valid
requested bytes that hit in the cache array 605 satisfied all of
the bytes requested as defined by the byte mask). If not, the
operations continue block 721. If so, the operations end.

In block 719, it is determined if there was a full miss—a
miss in both the victim buffer and the cache array for all
requested bytes of the cache line as specified by the byte
mask. If not (full miss false), the operations continue to
blocks 721 to 732. Otherwise (full miss true), the operations
continue to blocks 725 to 735.

In block 721, the cache issues a read request to next lower
level of memory for all requested byte(s) that missed in both
the victim buffer 607 and the cache array 605. If satisfied by
the next lower level, these bytes are hoisted to the cache by
the next lower level and also returned to the execution logic
by the next lower level. If not found in the next lower level,
the read request is lowered further down the memory
hierarchy until satisfied.

In block 723, the cache line bytes that are returned from
the next lower level of the memory hierarchy by the hoisting
process are merged into the corresponding resident cache
line of the cache array as appropriate. As described above,
the merger proceeds byte-by-byte based on the correspond-
ing valid bits of corresponding bytes of the two cache lines.
If neither cache line has a set valid bit for some byte then the
result also does not have the valid bit set and the byte value

US 9,513,904 B2

17

is undefined. If one cache line has a set valid bit and the other
does not, then the result has the valid bit set and the byte
value is taken from the cache line in which the byte was
marked valid. If both cache lines have the valid bit set, the
result will also have the valid bit set, and the byte value will
be that of the cache line that was higher in the hierarchical
memory system. These rules ensure that a load request,
searching from the top of the hierarchical memory system,
will find the most recently written value for each byte of the
load request. After the merger is complete, the process ends.

In block 725, the LRU cache line corresponding to the
requested cache line address is identified. In block 727, the
dirty bit for the LRU cache line is checked to determine if
it is set to indicate the LRU cache line is dirty. If so (dirty
bit set), the operations continue to block 729 to issue a
request to lower the valid bytes of the dirty LRU cache line
from the victim buffer 607 to the next lower level of memory
for merger, if need be (FIG. 10). In this merger process, the
valid byte(s) overwrite any corresponding pre-existing
cache line in the level below, or a new cache line is created.
The original line can remain in the cache and marked clean
so that it can be discarded without loss of data. Otherwise
(dirty bit not set), the operations continue to blocks 731 to
733.

In block 731, the LRU cache line is evicted from the cache
array 605 and stored in the corresponding victim buffer 607.
Blocks 729 and 731 continue to block 733 where the cache
issues a read request to next lower level of memory for all
of requested byte(s). If satisfied by the next lower level,
these bytes are hoisted to the cache by the next lower level
and also returned to the execution logic by the next lower
level. If not found in the next lower level, the load request
is lowered further down the memory hierarchy until satis-
fied.

In block 733, the cache line bytes that are returned from
the next lower level of the memory hierarchy by the hoisting
process are written as a new cache line in the cache array
with the dirty bit cleared (i.e., the cache line is marked
clean). After the new cache line is written, the process ends.

Note that in the processing of a load request as described
above with respect to FIGS. 7A and 7B, the protection
lookaside buffer 609 can be accessed in parallel with the
access of the victim buffer 607 and cache array 605 corre-
sponding to the cache line address. The access of the victim
buffer 607 and cache array 605 is not allowed to complete
unless the protection lookaside buffer 609 allows for access
to the requested cache line address. In the event that the
protection lookaside buffer 609 generates a fault and thus
forbids access to the requested cache line address, the access
of the victim buffer 607 and cache array 605 can be aborted
and an error flag is returned to the processor, which typically
halts execution of the program.

FIG. 8 is a graphical representation of the hoisting of data
bytes the memory hierarchical memory system that includes
L1 Data Cache of FIG. 6. The hoisting process is carried out
when a read request hits at any level of the memory
hierarchy but the top level. The hoisting process causes all
valid bytes of the hit cache line to be hoisted one level up the
hierarchy. It can also be configured to cause the valid bytes
of the hit cache line to be returned directly to the execution/
retire logic of the CPU. In the hoisting process, the valid data
byte(s) from the hoisted cache line are merged with the
corresponding resident cache line, if one exists. In this
merger process, the valid data bytes replace invalid data
bytes of the resident cache line. Any valid data bytes in the
resident cache line remain unchanged. If a corresponding
resident cache line does not exist in the upper level cache,

10

15

20

25

30

35

40

45

50

55

60

65

18

a new cache line is created and marked not dirty. The
original cache line is left in the lower level of the memory
hierarchy. The hoisting process can possibly repeat itself up
the levels of memory hierarchy such that the valid bytes are
populated in the upper levels of the memory hierarchy, if
desired.

FIG. 9 is a flow chart that illustrates exemplary operations
carried out by the [.1 Data Cache of FIG. 6 in processing a
store request. In block 901, the operations begin where the
store request processing logic 603 processes a store request
by extracting the cache line address and byte mask and data
bytes to be stored from the load request. Alternatively, the
cache line address and byte mask can possibly be derived
from a byte address and length specified in the store request.

In block 903, the valid data bytes to be stored as indicated
by the byte mask are stored in the victim buffer 607
corresponding to the cache line address with a dirty bit
marked dirty.

In block 905, the cache ascertains whether the cache array
corresponding to the cache line address already stores valid
bytes of the requested cache line. This can involve checking
the an unshadowed bit that indicates whether the data byes
of the cache line as stored in the victim buffer are not
duplicated in the corresponding cache array of the cache. If
not, the operations continue to blocks 907 to 915. Otherwise,
the operations continue to block 917.

In block 907, the LRU cache line corresponding to the
requested cache line address is identified. In block 909, the
dirty bit for the LRU cache line is checked to determine if
it is set to indicate the LRU cache line is dirty. If so (dirty
bit set), the operations continue to blocks 911 and 913. In
block 911, the cache issues a write request that lowers the
valid bytes of LRU cache line from the victim buffer 607 to
the next lower level of memory for merger, if need be. In this
merger process, the valid byte(s) overwrite any correspond-
ing pre-existing cache line in the level below, or a new cache
line is created. In block 913, the valid byes of the new cache
line as stored in the victim buffer can be copied as a new
cache line the corresponding cache array and marked as
clean.

In block 915, the valid requested byte(s) of the cache line
as stored in the victim buffer 607 and such LRU cache line
are swapped with one another, thus writing the valid byte(s)
of the requested cache line, its tag, valid bits as stored in the
victim buffer 607 into the corresponding cache array 605 and
marked as clean.

Note that operations of blocks 913 and 915 can be
configured to swap new dirty lines into the cache arrays 605
using spare bandwidth and evicting the corresponding LRU
cache line.

In block 917, the valid data byte(s) of the cache line as
stored in the victim buffer 607 is (are) merged with the valid
data bytes of data stored in the corresponding resident cache
line, with priority given to the data stored in the victim
buffer. This merger proceeds byte-by-byte based on the
corresponding valid bits of corresponding bytes of the two
cache lines. If neither cache line has a set valid bit for some
byte then the result also does not have the valid bit set and
the byte value is undefined. If one cache line has a set valid
bit and the other does not, then the result has the valid bit set
and the byte value is taken from the cache line in which the
byte was marked valid. If both cache lines have the valid bit
set, the result will also have the valid bit set, and the byte
value will be that taken from the victim buffer entry.

Note that in the processing of a store request as described
above with respect to FIG. 9, the protection lookaside buffer
609 can be accessed in parallel with the access of the victim

US 9,513,904 B2

19

buffer 607 and cache array 605 corresponding to the cache
line address. The access of the victim buffer 607 and cache
array 605 is not allowed to complete unless the protection
lookaside buffer 609 allows for access to the requested cache
line address. In the event that the protection lookaside buffer
609 generates a fault and thus forbids access to the requested
cache line address, the access of the victim buffer 607 and
cache array 605 can be aborted and an error flag is returned
to the processor, which typically halts execution of the
program.

FIG. 10 is a graphical representation of the lowering of
data bytes within the hierarchical memory system that
includes [.1 Data Cache of FIG. 6. In the lowering process,
valid data bytes of dirty lines migrate down one level as a
result of LRU eviction. In the lowering process, all dirty and
valid data bytes are lowered. The valid bytes overwrite any
corresponding cache line in the level below, or a new line is
created and marked dirty. The original line is left in the
upper level of cache and marked clean.

The improvements described herein can also be extended
to shared memory systems where several processors access
globally shared memory. These systems include modern
multicore chips (chip multiprocessors). In a shared memory
system, each of the processors (processor cores) may read
and write to a single shared address space. In a shared
memory multiprocessor system with private cache memory
for each processor, it is possible to have many copies of any
one data operand. An exemplary non-limiting shared
memory multiprocessor system is shown in FIG. 11, which
includes a multicore processing chip 1101 having two pro-
cessing cores 1103 A and 1103B. The processing core 1103 A
has its own private L1 Data Cache 1105A and Private 1.2
Cache 1107A. The private L1 Data Cache 1105A and Private
L2 Cache 1107A can provide operand data accessible by
both the processing core 1103A and the processing core
1103B. The processing core 1103B has its own private L1
Data Cache 1105B and Private 1.2 Cache 1107B. The private
L1 Data Cache 1105B and Private L2 Cache 1107B can
provide operand data accessible by both the processing core
1103A and the processing core 1103B. An interconnect
network 1109 provides for data paths between the elements
as needed. A memory controller 1111 is operably coupled to
the interconnect network 1109 and provides access to shared
main memory 1113 as shown. In this example, one copy of
data could be stored in shared main memory 1113 and copies
could be stored in the private L2 caches 1107A and 1107B
of each processor. When once copy of the operand data is
changes, the other copies of the operand data must also be
changed.

For the shared memory machine, the memory consistency
model defines the architecturally visible behavior of its
memory system. Consistency definitions provide rules about
loads and stores (or memory reads and writes) and how they
act upon memory. As part of supporting a memory consis-
tency model, the caches and the memory controller of the
memory hierarchy employ a cache coherence protocol that
ensures that multiple cached copies of data are kept up-to-
date.

It is generally agreed that the most natural and easy to use
consistency model is the sequential consistency model (or
SC). The SC was first formalized by Lamport, who first
called a single processor (core) sequential if “the result of an
execution is the same as if the operations had been executed
in the order specified by the program.” Lamport then called
a multiprocessor sequentially consistent if “the result of any
execution is the same as if the operations of all processors
(cores) were executed in some sequential order, and the

10

25

30

35

40

45

20

operations of each individual processor (core) appear in this
sequence in the order specified by its program.” This total
order of operations is called memory order. In the SC,
memory order respects each processor’s program order, but
other less vigorous consistency models may permit memory
orders that do not always respect the program orders.

Most of these less rigorous policies make it impossible for
a program to determine whether a particular event has
occurred or not, or make it indeterminate in which order a
pair of events will be seen to have occurred. The problem is
most acute in memory access, where many consistency
models leave undefined whether a particular store will
appear to have occurred before or after a particular load.
When both store and load access the same datum, this
indeterminacy means that the program cannot know whether
a load will return the stored value or the value possessed by
the datum prior to the store. The uncertainty makes many
algorithms impossible to implement, and is a source of bugs
arising when execution order does not match the program
order written and expected by the programmer.

To alleviate these problems, many hardware designs sup-
ply memory barrier instructions, often shortened to mem-
bars. A membar defines a synchronization point in a pro-
gram; all operations prior to the membar in program order,
and none of those after the membar, will be seen to have
taken full effect when the membar is executed. The membar
operation itself is very expensive, but is only needed when
different agents (such as CPUs) must access the same data
with consistent ordering. Aside from membar, the hardware
is free to reorder operations for greater performance. With
judicious and correct use of membar, a system with a weak
consistency model can have higher performance than what
can be obtained from typical implementations of sequential
consistency. Unfortunately, it is extremely difficult to
achieve judicious and correct use of membars, and the
resulting asynchronous bugs have proven to be hard to
reproduce and remove.

In accordance with the present disclosure, the execution/
retire logic and the memory hierarchy of the computer
processing systems as described herein are adapted to pro-
vide full sequential consistency for a shared memory sys-
tem. This applies to both single core and multicore chips as
well as to sequential consistency between chips if the
interconnection fabric preserves the ordering. Specifically,
the execution/retire logic and the memory hierarchy of each
processor of the shared memory system are configured such
that there is a defined canonical ordering of memory refer-
ences as issued by the program, and guarantees that there is
no overtaking within the stream of such references, so that
the canonical order is preserved all the way to the off-chip
fabric.

The canonical ordering of references is determined by the
order in which load and store operations are executed by the
core, disambiguated as necessary by the architecture defi-
nition. It is the responsibility of a compiler or other tool
chain to ensure that these operations are encoded in an order
which matches the order of operations as specified by the
program. It is noted that programming languages vary in
their ordering rules, but in all cases the program ordering is
expressible in the operation order.

The execution/retire logic of the processor can be embod-
ied by a wide-issue machine where a single instruction can
bundle several different operations, possibly including mul-
tiple loads, stores, or a mix. Details of an example of such
a wide issue machine are described in U.S. patent applica-
tion Ser. No. 14/290,161, filed on May 29, 2014, commonly
assigned to the assignee of the present invention and herein

US 9,513,904 B2

21

incorporated by reference in its entirety. In this case, there is
a textual order of operations within such a bundle. The
positions in this order are called slots, and correspond to the
execution pipelines that will execute the particular opera-
tions. Within an instruction bundle, the canonical order
corresponds to slot order; later operations in slot order
appear later in the reference request sequence. Thus if two
stores in the same instruction reference the same byte in
memory the store that is later in slot order will overwrite the
store that is earlier in slot order. An instruction bundle can
contain a mix of loads and stores. The canonical ordering
alternates these; it is as if all loads are executed first, in slot
order, and then all stores, also in slot order. That is, a load
cannot see a store in its own instruction, but can see the
effect of a store in the previous instruction in program order.

Furthermore, the execution/retire logic of the processor
can supported deferred load operations as described in U.S.
patent application Ser. No. 14/515,058, filed concurrently
herewith, commonly assigned to the assignee of the present
invention and herein incorporated by reference in its
entirety. The deferred load operation is issued in one cycle
(the issue cycle) possibly at the same time as other opera-
tions in its instruction, but does not retire until a specified
number of cycles later (the retire cycle). Thus, if the various
delays are specified appropriately, several load operations
from different issue cycles may retire together in a single
retire cycle. These load operations are all ordered together
between any store operation of the instruction before the
retire cycle and any store operation of the instruction of the
retire cycle itself. That is, the canonical order orders deferred
loads as of their retire cycle, not as of their issue cycle. The
ordering among load operations of a single retire cycle,
having no visible side effects, need not be made canonical.
However, a canonical ordering for such load operations can
be defined as a consequence of the need to define an ordering
for the retiring load result; this ordering is by the amount of
deferred delay, and by slot order within equal delay. Each
load or store operation is turned into a memory request by
the load/store hardware functional unit that executes it.
These requests are logically queued to the memory hierar-
chy.

In the event that there is only one load/store functional
unit, the memory requests can be processed in order. In this
case, store requests are sent directly to the top level data
cache where the operand data is stored in the top level data
cache (such as by being written into a victim buffer as
described above). Load requests are assigned to a retire
station and the requests (with an indicator of the assigned
station) are sent to the top level data cache. The retire
stations monitor the stream of store requests to detect
collisions between earlier loads and later stores. In the event
of a collision between a deferred load operation and a later
store operation, the retire station ignores the result of the
earlier request and either updates its buffer with data from
the colliding store, or re-sends another load request for the
data. Thus the retire stations see all store operations up to the
cycle in which retire takes place, thereby preserving the
canonical ordering between store operations and the retire
cycles of deferred load operations.

In the event that there are two or more load/store func-
tional units then two or more store operations may issue in
the same cycle. If the functional units involved share a data
path to the top level data cache, then the requests are
time-ordered in the data path; if the design supplies a data
path to each functional unit, then order is implicitly defined
by which data path is used for which request. The top level
data cache include logic that resolves write-write collisions

10

15

20

25

30

35

40

45

50

55

60

65

22

if any occur, such that the data in the cache reflect the update
ordering of the canonical ordering. The update process is
pipelined such that the values stored will be seen by loads
retiring in the following cycle. Because the loads search the
memory hierarchy in order, a load operation will necessarily
find the most recently written value for each loaded byte,
even when (due to the use of valid bits in the cache lines) the
loaded bytes are scattered within the hierarchy. Thus within
one processor (core) all loads and stores observe the canoni-
cal ordering in all cases, resulting in a sequentially consis-
tent memory model within the processor (core) and its
attached memory hierarchy.

The multi-processor behavior model depends on the
sequential consistency of the behavior models of the indi-
vidual processors (cores). Each processor (core) is config-
ured to provide a stream of requests (in SC order) to their
private caches. The private caches must coordinate with
each other to ensure cache consistency. There are many
well-known protocols for ensuring relative consistency
which will ensure SC if the requests are already SC within
their own streams. Many of these protocols require snooping
by the private caches into the write stream produced by the
associated processor (core). In general all such techniques
can be applied.

Certain features of the memory hierarchy of the computer
processing systems as described herein permit enhanced
coherency protocols if the connection fabric between caches
supports them. Most important is the availability of the
per-byte valid bits that specify the validity/invalidity of the
individual bytes in a cache line. Any of the common
protocols, MOESI for example, can be augmented by
including a byte mask that specifies the bytes of a cache line
that pertain to a given coherence request. This can reduce the
granularity of coherence request from that of the cache line
to the individual byte.

For example, the private caches of two different proces-
sors (cores) can maintain simultaneous shared use of the
same cache line, so long as the set of valid bit(s) of the
byte(s) of the cache line that are stored by the private cache
of one processor are disjoint from the set of valid bit(s) of
the byte(s) of the cache line that are stored by the private
cache of the other processor. Thus, for example, in this
protocol a write to a cache line not in its own private cache
(which is implicitly in Invalid state) must first broadcast a
“Request to Invalidate” (RFI) message that invalidates any
copy of the requested data in other caches, then write to its
own cache and enter the Modified state. According to the
present disclosure, the RFI message includes both the
address of the affected cache line and also the byte mask that
indicates the affected bytes of that cache line. This message
is sent to all caches that might have a copy of the data. The
recipient cache(s) can employ the byte mask to share use of
the bytes of the cache line, if appropriate. Specifically, if the
byte mask of the received RFI message refers to byte(s) of
the cache line that is (are) disjoint from the valid byte(s) of
the cache line that is (are) stored in recipient cache, then the
recipient cache need not change the state of the cache line
nor perform any communication operations, although the
protocol may require the return of a minimal acknowledge-
ment response back to the requester cache. If the byte mask
of the RFI message refers to byte(s) of the cache line that
overlap (are non-disjoint with respect to) valid byte(s) of the
cache line that is(are) stored in the recipient cache, then the
recipient cache need only mark these overlapping bytes
invalid in the cache line. It does not matter what state the
cache line was in the recipient cache. This state will remain
unchanged unless the RFI message invalidates the last

US 9,513,904 B2

23

invalid byte in the cache line, in which case the cache line
state should be changed to Invalid and its dirty bit, if set,
should be cleared. When all responses have been received,
the requester cache can be sure that no other cache has the
cache line with any valid bytes overlapping the bytes to be
written. The requestor cache can then commit to store such
data bytes, and the cache line enters the Modified state. The
adaptation of this enhancement to other state transitions and
other coherency protocols is straightforward and obvious. It
is in fact not necessary for the requestor cache to wait for
responses to the RFI request. For purposes of the state
change, the write can be made into the local cache at once
(and the line state changed to Modified) concurrently with
the transmission of the RFI message. The other caches will
simply invalidate the relevant bytes, and coherency does not
require any response, although one may be made to ensure
the security of the coherency fabric and the correct receipt
of the RFI message.

Note that in prior art machines, the receipt of an RFI
message would cause the recipient cache to invalidate the
entire cache line, passing the contents of the line back to the
requester cache. The pass-back may be directly cache-to-
cache over the coherency fabric, or may involve the recipi-
ent writing the line back to memory and the requester
loading it from memory.

Also note that if the store operations of any single
processor (core) exhibit sequential consistency then the
enhanced protocol described here will ensure sequential
consistency across all processors (cores). The latency of the
coherency fabric may be such that another processor core
may issue a load request (read) or a store request (write)
against the data invalidated by the RFI message either before
or after the RFI message is received. If before, then the load
request (read) will be satisfied from local cache or the store
request (write) will modify the local cache, only to be
discarded by the RFI message. If after, the load request
(read) must use the coherency protocol to obtain a current
(after the RFI message) copy of the data, while the store
request (write) will simply update the line and send its own
RFI message.

As with any coherency protocol, the enhanced protocol as
described herein must deal with race conditions in the
interconnection fabric between caches. Whether races are
possible depends on the fabric implementation, and is out-
side the scope of this disclosure. For example, the fabric on
multicore chip may be a single bus that is snooped by all and
handles only one request at a time. In such a fabric, races are
impossible and the enhanced protocol works as described. In
a different implementation, the fabric may be a point-to-
point network with non-zero latency, and it is possible for
two requests to cross each other in transit. In such a case, two
different caches may each send a RFI message for the same
data to each other at the same time, leading both caches to
invalidate the data, resulting either in stale data in memory
becoming the active copy, or even complete loss of data if
the cache line is backless.

All fabrics implement mechanisms to avoid such races.
For example, the fabric may record the address of an issued
RFI message and require an acknowledgement in response.
If an RFI message comes in for the same address while not
all acknowledgements have been received then the fabric
may refuse the RFI message rather than invalidating the
local copy in cache, forcing the two caches involved to
negotiate an ordering between them. Similar stratagems
apply to other fabric designs; the particular implementation
is beyond the scope of this disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

24

The enhanced cache coherency protocol as described
herein has two significant advantages.

First, because the private caches for two different proces-
sors (cores) may hold the same cache line in a modified state
so0 long as the sets of valid bits held by the private caches for
the two different processors are disjoint with respect to one
another, the phenomena of false sharing cannot occur. False
sharing arises when by accident of data layout two proces-
sors (cores) reference disjoint data (no true sharing of data)
that happen to lie in the same cache line. In a conventional
protocol, the line will ping-pong back and forth between the
two cores as each modifies its own part. This ping-ponging
is expensive in latency, power and bandwidth, and is avoided
here. Instead, the cache line ownership transfers only when
a datum in the cache line is actually shared by more than one
processor (core).

A second advantage is that a load request (read) can be
satisfied by transmitting only the bytes needed and not a
whole line. Furthermore, the maximal number of bytes in a
load request (write) can be defined as less than the line size
in most configurations. In this case, the coherency data path
can be made smaller than would be required without the
enhancements, which saves power and area. Of course, if
several items in the same cache line are to be shared, it may
take several protocol exchanges to build up the full sharing,
which will counterbalance some of the gain. However,
typical program usage is for shared items, for example locks,
to be smaller than a full cache line.

There have been described and illustrated herein several
embodiments of a computer processor and corresponding
method of operations. While particular embodiments of the
invention have been described, it is not intended that the
invention be limited thereto, as it is intended that the
invention be as broad in scope as the art will allow and that
the specification be read likewise. For example, the micro-
architecture and memory organization of the CPU 101 as
described herein is for illustrative purposes only. A wide
variety of CPU microarchitectures can embody the improve-
ment and methods described herein, including microarchi-
tectures that employ in-order execution, microarchitectures
that employ out-of-order execution, superscalar microarchi-
tectures, VLIW microarchitectures, single-core microarchi-
tectures, multi-core microarchitectures, and combinations
thereof. In another example, the functionality of the CPU
101 as described herein can be embodied as a processor core
and multiple instances of the processor core can be fabri-
cated as part of a single integrated circuit (possibly along
with other structures). It will therefore be appreciated by
those skilled in the art that yet other modifications could be
made to the provided invention without deviating from its
spirit and scope as claimed.

What is claimed is:

1. A computer processing system comprising:

a hierarchical memory system having at least one cache;
and

a processor having execution logic that generates load
memory requests that are supplied to the hierarchical
memory system,

wherein the at least one cache stores a plurality of cache
lines as well as a plurality of valid bits for each cache
line, wherein each cache line includes a plurality of
data bytes, and wherein the plurality of valid bits for a
given cache line correspond to the plurality of data
bytes of the given cache line and provide an indication
of the validity of the corresponding data bytes of the
given cache line;

US 9,513,904 B2

25

wherein each given load memory request includes a cache
line address that specifies a particular cache line as well
as a request byte data that specifies at least one par-
ticular data byte of the cache line specified by the cache
line address, and the cache is configured to process the
given load memory request by i) accessing at least one
cache line stored by the cache that putatively matches
the cache line address of the load memory request, and
i1) processing the valid bits of the accessed cache line
together with the request byte data in order to output
from the cache for supply to the execution logic only
valid data bytes of the accessed cache line for those
data bytes specified by the request byte data of the
memory request.
2. A computer processing system according to claim 1,
wherein:
the request byte data comprises a byte mask with a
number of bits that equal the number of data bytes in a
given cache line.
3. A computer processing system according to claim 1,
wherein:
the at least one cache is an associative structure that stores
the plurality of cache lines along with a tag for each
cache line; and
the at least one cache is further configured to process the
load memory request by comparing the tag of the cache
line address of the memory request to the tag of the
cache line stored by the cache that putatively matches
the cache line address of the memory request.
4. A computer processing system according to claim 3,
wherein:
the at least one cache is further configured to generate a
plurality of per-byte hit/miss signals based on the
processing of the valid bits of the accessed cache line
and the tag comparison of the tag of the accessed cache
line, wherein the plurality of per-byte hit/miss signals
correspond to the number of data bytes in a given cache
line.
5. A computer processing system according to claim 4,
wherein:
each per-byte hit/miss signals indicates whether the cache
stores a corresponding valid data byte for the cache line
corresponding to the cache line address but only for
those data bytes specified by the request byte data.
6. A computer processing system according to claim 3,
wherein:
the associative structure further stores a dirty bit for each
cache line, wherein the dirty bit is used when evicting
the corresponding cache line to determine whether the
cache line should be lowered to a lower level of the
hierarchical memory system.
7. A computer processing system according to claim 3,
wherein:
the associative structure is one of a set-associative struc-
ture with a plurality of ways and a fully-associative
structure.
8. A computer processing system according to claim 1,
wherein:
the execution logic of the processor further generates
store memory requests that are supplied to the hierar-
chical memory system, wherein each store memory
request includes a cache line address that specifies a
particular cache line as well as a request byte data that
specifies at least one particular data byte of the cache
line specified by the cache line address.
9. A computer processing system according to claim 8,
wherein:

10

20

25

30

35

40

45

50

55

60

26

the at least one cache includes at least one buffer and at
least one cache array for storing cache lines;
wherein the at least one buffer stores valid data bytes for
newly written cache lines as well as cache lines newly
evicted from the at least one cache array.
10. A computer processing system according to claim 9,
wherein:
the at least one cache processes a store memory request by
writing the valid data bytes provided as part of the store
memory request to the at least one buffer and marking
such data bytes as dirty.
11. A computer processing system according to claim 10,
wherein:
in the event that the at least one cache array stores valid
data bytes for the cache line specified by the store
memory request, the at least one cache further pro-
cesses the store request by merging valid data bytes of
the cache line as stored in the buffer with the valid data
bytes stored in the at least one cache array.
12. A computer processing system according to claim 10,
wherein:
the at least one cache further processes the store memory
request by writing valid data bytes of the cache line as
stored in the buffer into the at least one cache array and
marking such data bytes as clean.
13. A computer processing system according to claim 10,
wherein:
the at least one cache is further configured to lower valid
data bytes of an evicted cache line marked as dirty as
stored in the at least one buffer to a lower level of the
hierarchical memory system.
14. A computer processing system according to claim 13,
wherein:
the lower level of the hierarchical memory system is
configured to store the valid data bytes of the evicted
cache line marked as dirty as lowered by the cache by
overwriting any corresponding cache line or creating a
new cache line and marking it dirty.
15. A computer processing system according to claim 9,
wherein:
the at least one cache is configured to process the given
load memory request by accessing both the at least one
buffer and the at least one cache array to determine if
either one stores valid data bytes for the cache line
specified by the cache line address of the given load
memory request.
16. A computer processing system according to claim 15,
wherein:
the at least one cache further processes a load memory
request by issuing a read request to the next lower level
in the hierarchical memory system, where the read
request specifies a number of data bytes for the
requested cache line that missed in both the at least one
buffer and the at least one cache array.
17. A computer processing system according to claim 16,
wherein:
the lower level of the hierarchical memory system is
configured to hoist valid data bytes of the requested
cache line as specified in the read request that hit in the
lower level of the hierarchical memory system for
storage in the at least one cache.
18. A computer processing system according to claim 17,
wherein:
the at least one cache is configured to carry out a byte-
wide merger process with respect to the valid data bytes
for a given cache line as hoisted from the lower level

US 9,513,904 B2

27

of the hierarchical memory system and the valid data
bytes for the given cache line as stored in the at least
one cache array.
19. A shared memory multiprocessor system comprising:
a plurality of processors with a hierarchical memory
system that includes at least one private cache per
processor and shared memory resources;
wherein the at least one private cache of each given
processor stores a plurality of cache lines as well as a
plurality of valid bits for each cache line, wherein each
cache line includes a plurality of data bytes, and
wherein the plurality of valid bits for a given cache line
correspond to the plurality of data bytes of the given
cache line and provide an indication of the validity of
the corresponding data bytes of the given cache line;
wherein the private caches of the hierarchical memory
system are coupled to one another by an interconnect
network; and
wherein the at least one private cache of each given
processor is configured to carry out a cache coherence
protocol that allows the private caches for different
processors to hold the same cache line in modified state
so long as the sets of valid bits held by the respective
private caches for the different processors are disjoint
with respect to one another.
20. A shared memory multiprocessor system according to
claim 19, wherein:
in processing a store request for a cache line that is not
stored in a given private cache, the cache coherence
protocol is configured to broadcast a message that
invalidates any copy of particular data bytes of the
cache line in other private caches.
21. A shared memory multiprocessor system according to
claim 20, wherein:
the message includes an address for an affected cache line
and a byte mask that indicates the affected bytes of that
cache line.
22. A shared memory multiprocessor system according to
claim 21, wherein:
at least one recipient cache that receives the message is
configured to use the byte mask to share use of zero or
more bytes of the cache line.

35

40

28

23. A shared memory multiprocessor system according to
claim 22, wherein:
if the byte mask of the received message refers to one or
more bytes of the cache line that are disjoint from one
or more valid bytes of the cache line stored in recipient
cache, then the recipient cache is configured to not
modify the state of the cache line.
24. A shared memory multiprocessor system according to
claim 22, wherein:
if the byte mask of the received message refers to one or
more bytes of the cache line that overlap one or more
valid bytes of the cache line stored in the recipient
cache, then the recipient cache is configured to mark
the overlapping bytes invalid in the cache line of the
recipient cache.
25. A shared memory multiprocessor system according to
claim 24 wherein:
if all bytes are marked invalid in the cache line of the
recipient cache, then the recipient cache is configured
to change the state of the cache line to an invalid state
and to clear the dirty bit for the cache line when set.
26. A computer processing system according to claim 1,
wherein:
the at least one cache further processes a load memory
request by issuing a read request to the next lower level
in the hierarchical memory system, where the read
request specifies a number of data bytes for the
requested cache line that missed in the cache.
27. A computer processing system according to claim 26,
wherein:
the lower level of the hierarchical memory system is
configured to hoist valid data bytes of the requested
cache line as specified in the read request that hit in the
lower level of the hierarchical memory system for
storage in the cache.
28. A computer processing system according to claim 27,
wherein:
the cache is configured to carry out a byte-wide merger
process with respect to the valid data bytes for a given
cache line as hoisted from the lower level of the
hierarchical memory system and the valid data bytes
for the given cache line as stored in the cache.

#* #* #* #* #*

